اثرحفاظت انجمادی ملاتونین بر سلول‌های بنیادی اسپرماتوگونی موش نوزاد، افزایش تکثیر و کاهش آپوپتوز

نوع مقاله : Original Article(s)

نویسندگان

1 دانشیار، گروه علوم تشریحی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

2 دانشجوی ارشد علوم تشریح، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 استادیار، گروه علوم تشریح و بیولوژی تولید مثل، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

10.48305/jims.v43.i838.1488

چکیده

مقاله پژوهشی




مقدمه: با توجه به افزایش میزان ناباروری و نقش کلیدی سلول‌های بنیادی اسپرماتوگونی (SSCS) در شروع اسپرماتوژنژ و حفظ باروری، تلاش برای به حداقل رساندن آسیب‌های ناشی از تکنیک‎های نگه‎داری طولانی مدت SSCs یکی از مباحث حائز اهمیت در تحقیقات پایه و بالینی محسوب می‌شود. بنابراین این مطالعه به منظور بررسی اثر ملاتونین بر سلول‎های بنیادی اسپرماتوگونی نوزاد موش طی فرایند انجماد و ذوب طراحی شد.
روش‌ها: سلول‌های بنیادی اسپرماتوگونی از نوزادان موش‌ نر 5-3 روزه نژاد BALB/C بعد از هضم آنزیمی جداسازی شده و با نشانگر  ID4توسط تکنیک فلوسایتومتری تایید ماهیت شدند. بعد از کشت، سلول‌ها در دو گروه کنترل (محیط پایه انجمادی) و گروه 100 میکرومولار ملاتونین در محیط انجمادی پایه به مدت یک ماه فریز شدند. پس از فرایند انجماد– ذوب، میزان بیان پروتئین آپوپتوزی Caspase-3  و بیان پروتئین تکثیری Gfra1  در سلول‌ها مورد ارزیابی قرار گرفت. سطح معنی‌داری 0/05 ≥ P در نظر گرفته شده است.
یافته‌ها: پس از فرایند انجماد- ذوب، ملاتونین سبب کاهش معنادار بیان پروتئین آپوپتوزی Caspase-3  شد. همچنین افزایش بیان پروتئین GFRa1 در حضور ملاتونین به صورت معنی‌داری نسبت به گروه کنترل گزارش شد.
نتیجه‌گیری: نتایج حاصل از این مطالعه نشان داد که ملاتونین، به عنوان یک عامل محافظ انجماد از طریق کاهش آپوپتوز و افزایش تکثیر سلول‎های بنیادی اسپرماتوگونی می‌تواند برای انجماد و نگه‎داری طولانی مدت سلول‎ها و درمان ناباروری در کلینک گزینه مناسبی ‎باشد.

تازه های تحقیق

عطیم هدایت پور:  PubMed ,Google Scholar 

مریم خانه زاد:  Google Scholar 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Cryopreservation Effect of Melatonin on Neonatal Mouse Spermatogonial Stem Cells, Increasing Proliferation and Decreasing Apoptosis

نویسندگان [English]

  • Azim Hedayapour 1
  • Reihaneh Ebneyamin 2
  • Maryam Khanehzad 3
1 Associate Professor, Department of Anatomical Sciences, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
2 MSc Student, Department of Anatomical Sciences and Reproductive Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Assistant Professor, Department of Anatomical Sciences and Reproductive Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Considering the increasing infertility rate and the key role of spermatogonia stem cells (SSCS) in initiating spermatogenesis and maintaining fertility, trying to minimize the damage caused by long-term storage techniques of SSCs is considered as one of the important topics in basic research and clinic. Therefore, this study was designed to investigate the effect of melatonin on neonatal mouse spermatogonial stem cells following freezing and thawing.
Methods: Spermatogonial stem cells were isolated from neonatal mouse 3-5 days old BALB / C after enzymatic digestion and identified with IDA marker by flow cytometry. After culture, the cells were frozen in two groups:1) control (basal cryopreservation) and 2) 100 μM melatonin in basal cryopreservation for one month. After freezing-thawing process, the expression level of the apoptotic protein Caspase-3 and the expression of the proliferative protein Gfra1in the cells were evaluated. The significance level was considered to be P ≤ 0.05.
Findings: After freezing-thawing process, melatonin significantly reduced the expression of the apoptotic protein Caspase-3. Also, a significant increase in the expression of Gfra1protein was reported in the presence of melatonin compared to the control group.
Conclusion: The results of this study indicate that melatonin as a cryoprotectant by reducing apoptosis and increasing proliferation of spermatogonial stem cells can be a suitable option for cryopreservation and long-term storage of cells and infertility treatment in the clinic.

کلیدواژه‌ها [English]

  • Spermatogonial Progenitor Cells
  • Melatonin
  • Cryoprotective Agent
  1. vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem 2018; 62: 2-10.
  2. Ojo OA, Nwafor-Ezeh PI, Rotimi DE, Iyobhebhe M, Ogunlakin AD, Ojo AB. Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicol Rep 2023.
  3. Asadi A, Ghahremani R, Abdolmaleki A, Rajaei F. Role of sperm apoptosis and oxidative stress in male infertility: A narrative review. Int J Reprod Biomed 2021; 19(6): 493–504.
  4. Gül M, Dong L, Wang D, Diri MA, Andersen CY. Surrogate testes: Allogeneic spermatogonial stem cell transplantation within an encapsulation device may restore male fertility. Med Hypotheses 2020; 139: 109634.
  5. Serrano JB, Meißner A, van Pelt AM, Mulder CL. Fathering a child after childhood cancer treatments. Tijdschr Urol 2022; 12(2-3): 65-70.
  6. Mulder RL, Font-Gonzalez A, Green DM, Loeffen EA, Hudson MM, Loonen J, et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 2021; 22(2): e57-e67.
  7. Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2018; 99(1): 52-74.
  8. Sadeghi Z, Ishaqi S, Dashi GR. The effec of folic acid and nicotinic acid on malondialdehyde levels of semen in oligospermia men after cryopreservation [in Persian]. J Isfahan Med Sch 2021; 38(603): 921-8.
  9. Adetunji PF, Kyle E, Adetunji P F, Kyle E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 2018: 29: 207-14.
  10. Yong KW, Laouar L, Elliott JA, Jomha NM. Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology 2020; 96: 1-11.
  11. Liu X, Pan Y, Liu F, He Y, Zhu Q, Liu Z, et al. A review of the material characteristics, antifreeze mechanisms, and applications of cryoprotectants (CPAs). Journal of nanomaterials 2021; 2021: 1-14.
  12. Liu X, Xu Y, Liu F, Pan Y, Miao L, Zhu Q, et al. The feasibility of antioxidants avoiding oxidative damages from reactive oxygen species in cryopreservation. Frontiers in Chemistry 2021; 9: 648684.
  13. Lançoni R, Celeghini ECC, Alves MBR, Lemes KM, Gonella-Diaza AM, Oliveira LZ, de Arruda RP. Melatonin added to cryopreservation extenders improves the mitochondrial membrane potential of postthawed equine sperm. Journal of Equine Veterinary Science 2018; 69: 78-83.
  14. Malekzadeh M, Takzaree N, Toolee H, Kazemzadeh S, Khanmohammadi N, Solhjoo S, et al. Cryoprotective effect of pentoxifylline on spermatogonial stem cell during transplantation into azoospermic torsion mouse model. Reprod Sci 2022; 29(2): 526-39.
  15. Tvrda E, Mackovich A, Greifova H, Hashim F, Lukac N. Antioxidant effects of lycopene on bovine sperm survival and oxidative profile following cryopreservation. Vet Med 2017; 62(8): 429-36.
  16. Figueroa E, Farias J, Lee-Estevez M, Valdebenito I, Risopatrón J, Magnotti C, et al. Sperm cryopreservation with supplementation of α-tocopherol and ascorbic acid in freezing media increase sperm function and fertility rate in Atlantic salmon (Salmo salar). Aquaculture 2018; 493: 1-8.
  17. Kazemzadeh S, Mohammadpour S, Madadi S, Babakhani A, Shabani M, Khanehzad M. Melatonin in cryopreservation media improves transplantation efficiency of frozen–thawed spermatogonial stem cells into testes of azoospermic mice. Stem Cell Res Ther 2022; 13(1): 346.
  18. Azizollahi S, Aflatoonian R, Sadighi Gilani MA, Behnam B, Tajik N, Asghari-Jafarabadi M, et al. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 2016; 33(6): 771-81.
  19. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003; 69(2): 612-6.
  20. Khanehzad M, Nourashrafeddin SM, Abolhassani F, Kazemzadeh S, Madadi S, Shiri E, et al. MicroRNA-30a-5p promotes differentiation in neonatal mouse spermatogonial stem cells (SSCs). Reprod Biol Endocrinol 2021; 19(1): 85.
  21. Khanlari P, Khanehzad M, Khosravizadeh Z, Sobhani A, Barakzai S, Kazemzadeh S, et al. Effect of miR-30a-5p on apoptosis, colonization, and oxidative stress variables in frozen-thawed neonatal mice spermatogonial stem cells. Biopreserv Biobank 2021; 19(4): 258-68.
  22. Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, et al. Inhibiting necroptosis of spermatogonial stem cell as a novel strategy for male fertility preservation. Stem Cells Dev 2020; 29(8): 475-87.
  23. Boroujeni MB, Peidayesh F, Pirnia A, Boroujeni NB, Ahmadi SAY, Gholami M. Effect of selenium on freezing-thawing damage of mice spermatogonial stem cell: a model to preserve fertility in childhood cancers. Stem Cell Investig 2019; 6: 36.
  24. Toolee H, Rastegar T, Solhjoo S, Mortezaee K, Mohammadipour M, Kashani IR, Akbari M. Roles for Kisspeptin in proliferation and differentiation of spermatogonial cells isolated from mice offspring when the cells are cocultured with somatic cells. J Cell Biochem 2019; 120(4): 5042-54.
  25. Kazemzadeh S, Rastegar T, Zangi BM, Malekzadeh M, Khanehzad M, Khanlari P, et al. Effect of a freezing medium containing melatonin on markers of pre-meiotic and post-meiotic spermatogonial stem cells (SSCs) after transplantation in an azoospermia mouse model due to testicular torsion. Reprod Sci 2021; 28(5): 1508-22.
  26. Solhjoo S, Akbari M, Toolee H, Mortezaee K, Mohammadipour M, Nematollahi‐Mahani SN, et al. Roles for osteocalcin in proliferation and differentiation of spermatogonial cells cocultured with somatic cells. J Cell Biochem 2019; 120(4): 4924-34.
  27. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 2004; 36(6): 653-9.
  28. Sharma M, Srivastava A, Fairfield HE, Bergstrom D, Flynn WF, Braun RE. Identification of EOMES-expressing spermatogonial stem cells and their regulation by PLZF. Elife 2019; 8: e43352.
  29. Deng SL, Chen SR, Wang ZP, Zhang Y, Tang JX, Li J, et al. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J Pineal Res 2016; 60(4): 435-47.
  30. Wang F, Tian X, Zhang L, Gao C, He C, Fu Y, et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res 2014; 56(3): 333-42.
  31. Amidi F, Rashidi Z, Khosravizadeh Z, Khodamoradi K, Talebi A, Navid S, et al. Antioxidant effects of quercetin in freeze-thawing process of mouse spermatogonial stem cells. Asian Pacific Journal of Reproduction 2019; 8(1): 7-12.
  32. Aliakbari F, Heidari M, Hossini MA, Hosseini J. Increasing of post-freezing quality of Spermatogonial Stem Cells after pretreatment by vitamin E. Men's Health Journal 2019; 3(1): e1.
  33. Aliakbari F, Sedighi Gilani MA, Yazdekhasti H, Koruji M, Asgari HR, Baazm M, et al. Effects of antioxidants, catalase and α-tocopherol on cell viability and oxidative stress variables in frozen-thawed mice spermatogonial stem cells. Artif Cells Nanomed Biotechnol 2017; 45(1): 63-8.