نوع مقاله : ششمین کنگره غدد و متابولیسم
نویسندگان
1 گروه زیست فناوری پزشکی، دانشکدهی پزشکی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
2 استادیار زیست فناوری پزشکی، گروه زیست فناوری پزشکی و ژنتیک، دانشکدهی پزشکی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
3 دانشیار ژنتیک مولکولی، گروه زیست فناوری پزشکی و ژنتیک، دانشکدهی پزشکی،مرکز تحقیقات داروهای گیاهی رازی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
4 کمیتهی تحقیقات دانشجویی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
5 گروه زیست فناوری پزشکی، دانشگاه علوم پزشکی زنجان، زنجان، ایران
چکیده
تازه های تحقیق
حامد اسمعیل لشگریان: Google Scholar, PubMed
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Background: Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic β-cells, leading to less insulin production. Tolerogenic vaccines have emerged as a new approach to stop autoimmune reactions in T1D by inducing regulatory responses. Advanced bioinformatics tools like IEDB, TepiTool, and SYFPEITHI help in identifying effective epitopes for this purpose. In this study, identified the potential epitope APGFGSERGAPLAFA as promising vaccine candidate for T1D prevention or treatment.
Methods: The full amino acid sequence of the IA-2 protein was obtained from the UniProt database. IA-2, linked to type 1 diabetes, is a protein in pancreatic beta cells that acts as an autoantigen. To find Class II epitopes that could trigger an immune response in type 1 diabetes, several tools were used to predict how well peptide sequences from IA-2 bind to common MHC class II alleles. Key HLA alleles, specifically DRB1*01:01, DRB3*01:01, DRB4*01:01 and DRB5*01:01, which are associated with an elevated risk of type 1 diabetes, underwent analysis. Epitopes that received high scores were further examined to identify the most appropriate candidates for future diabetes treatments or diagnostic purposes.
Findings: The APGFGSERGAPLAFA epitope was identified as the sole common peptide exhibiting shared specificity across all three servers. Furthermore, it achieved high scores in SYFPEITHI and was placed among the top five peptides in TEPITOOL.
Conclusion: The simultaneous use of multiple epitope prediction tools can increase the accuracy in identifying immunological targets. However, further research is needed in this field.
کلیدواژهها [English]