Evaluation of Bone Marrow Absorbed Dose of 153Sm-EDTMP and 223Ra-Cl2 in Patients with Bone Metastasis Using Monte Carlo Simulation

Document Type : Original Article (s)

10.22122/jims.v39i611.13824

Abstract

Background: Targeted radiopharmaceutical therapy is one of the most common methods for relieving pain in patients with bone metastasis. In this type of treatment, the bone marrow absorbed dose, as a critical organ, needs to be considered as a limiting factor. Until now, beta-emitter radiopharmaceuticals have been considered for this treatment modality, which one of the most commons is samarium-153-ethylene diamine tetramethylene phosphonate (153Sm-EDTMP), but recently the radium-223-dichloride (223Ra-Cl2) alpha emitter radiopharmaceutical has been approved by the US Food and Drug Administration (FDA). The aim of this study was to compare the bone marrow absorbed dose of 153Sm-EDTMP and 223Ra-Clradiopharmaceuticals.
Methods: In this study, a lumbar vertebral bone phantom was used for simulation. The radiopharmaceuticals were distributed in the phantom, and the simulation was performed using the GATE Monte Carlo toolkit. After estimating the absorbed dose per decay in different parts of the phantom, the absorbed dose of radiopharmaceuticals in the bone marrow of a patient with 70 kg weight, was calculated using the Medical Internal Radiation Dosimetry (MIRD) method.
Findings: For 153Sm-EDTMP, the bone marrow absorbed dose was equal to 9.60 Gy for the administered activity of 2590 MBq. For 223Ra-Cl2, the bone marrow absorbed dose was calculated as 0.83 Gy for administered activity of 3.85 MBq.
Conclusion: Due to the lower bone marrow absorbed dose by 223Ra-Cl2 alpha emitter radiopharmaceutical, the use of this radiopharmaceutical as an alternative to 153Sm-EDTMP beta emitter radiopharmaceutical is recommended for palliative therapy of patients with bone metastasis.

Keywords


Kimura T. Multidisciplinary approach for bone metastasis: A review. Cancers (Basel) 2018; 10(6): 156.
Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12(20 Pt 2): 6243s-9s.
Costa L, Major PP. Effect of bisphosphonates on pain and quality of life in patients with bone metastases. Nat Clin Pract Oncol 2009; 6(3): 163-74.
Kakhki VR, Anvari K, Sadeghi R, Mahmoudian AS, Torabian-Kakhki M. Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev Cent East Eur 2013; 16(2): 66-9.
Smith HS, Mohsin I. Painful boney metastases. Korean J Pain 2013; 26(3): 223-41.
Tsuzuki S, Park SH, Eber MR, Peters CM, Shiozawa Y. Skeletal complications in cancer patients with bone metastases. Int J Urol 2016; 23(10): 825-32.
Dennis K, Vassiliou V, Balboni T, Chow E. Management of bone metastases: Recent advances and current status. J Radiat Oncol 2012; 1(3): 201-10.
Guerra Liberal FDC, Tavares AAS, Tavares JMRS. Palliative treatment of metastatic bone pain with radiopharmaceuticals: A perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot 2016; 110: 87-99.
Parker CC, Coleman RE, Sartor O, Vogelzang NJ, Bottomley D, Heinrich D, et al. Three-year safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases from phase 3 randomized alpharadin in symptomatic prostate cancer trial. Eur Urol 2018; 73(3): 427-35.
Strigari L, Sciuto R, D'Andrea M, Pasqualoni R, Benassi M, Maini CL. Radiopharmaceutical therapy of bone metastases with 89SrCl2, 186Re-HEDP and 153Sm-EDTMP: A dosimetric study using Monte Carlo simulation. Eur J Nucl Med Mol Imaging 2007; 34(7): 1031-8.
Bagheri R, Afarideh H, Ghannadi-Maragheh M, Bahrami-Samani A, Shirmardi SP. Dosimetric study of radium-223 chloride and 153Sm-EDTMP for treatment of bone metastases using MCNPX code and available experimental data. J Radioanal Nucl Chem 2015; 303(3): 1991-8.
Bagheri R, Afarideh H, Maragheh MG, Shirmardi SP, Samani AB. Study of bone surface absorbed dose in treatment of bone metastases via selected radiopharmaceuticals: Using MCNP4C code and available experimental data. Cancer Biother Radiopharm 2015; 30(4): 174-81.
Ranjbar H, Ghannadi-Maragheh M, Bahrami-Samani A, Beiki D. Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half-life of radionuclides. Radiation Physics and Chemistry 2015; 108: 60-4.
Ghahramani-Asl R, Razghandi F, Sadoughi HR. Dosimetric evaluation of several candidate radionuclides used in radionuclide therapy of bone metastases in an upper leg model. Radiat Phys Chem 2020; 176: 109082.
Saman D, Hossein R, Ameneh O, Etesam M. Dosimetry of bone-seeking radiopharmaceuticals for palliative therapy of bone metastases: A simulation study using GATE Monte Carlo Code. Frontiers Biomed Technol 2020; 7(2): 92-9.
Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4a simulation toolkit. Nucl Instrum Meth A 2003; 506(3): 250-303.
International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurement [ICRU Report. Bethesda, MD: ICRU; 1989.
Eckerman KF, Endo KFEA, Endo A. MIRD: Radionuclide data and decay schemes. Reston, VA: Society of Nuclear Medicine; 2007.
Bayouth JE, Macey DJ, Kasi LP, Fossella FV. Dosimetry and toxicity of samarium-153-EDTMP administered for bone pain due to skeletal metastases. J Nucl Med 1994; 35(1): 63-9.
Poeppel TD, Handkiewicz-Junak D, Andreeff M, Becherer A, Bockisch A, Fricke E, et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2018; 45(5): 824-45.
Handkiewicz-Junak D, Poeppel TD, Bodei L, Aktolun C, Ezziddin S, Giammarile F, et al. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides. Eur J Nucl Med Mol Imaging 2018; 45(5): 846-59.
Wissing MD, van Leeuwen FW, van der Pluijm G, Gelderblom H. Radium-223 chloride: Extending life in prostate cancer patients by treating bone metastases. Clin Cancer Res 2013; 19(21): 5822-7.