مروری بر ویژگی‌های ژنومی کرونا ویروس جدید (2019-nCoV) و چشم‌اندازهای پیش رو در پاتوژنز و درمان عفونت کووید ۱۹

نوع مقاله : مقاله مروری

نویسندگان

1 محقق پسا دکتری، دکتری ژنتیک مولکولی، گروه انگل‌شناسی و قارچ‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه انگل‌شناسی و قارچ‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: شیوع بیماری Coronavirus disease-2019 (COVID-19) ناشی از ویروس Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) دسته‌ی کروناویروس‌ها موسوم به 2019-nCoV، از اواخر سال ۲۰۱۹ میلادی در چین و در پی آن در دیگر کشورها، هنوز موضوع اصلی و مورد توجه در همه‌ی مجامع علمی و اجتماعی دنیا می‌باشد. با توجه به نوظهور بودن این ویروس، کسب اطلاعاتی درمورد تشابه یا تفاوت‌های آن با سایر ویروس‌های این خانواده، ویژگی‌های ژنتیک، چرخه‌ی بیولوژیک و چگونگی عملکرد پاتولوژیک آن، می‌تواند کمک شایانی در اتخاذ راهبردهای دقیق‌تر و بازدهی بالاتر در شناخت، کنترل و درمان بیماری حاصل از آن داشته باشد.روش‌ها: در این مطالعه‌ی مروری نقلی، تلاش شده است تا با جمع‌بندی مختصری از گزارش‌های متعدد علمی از دسامبر 2019 تا آپریل 2020 در زمینه‌ی مشخصات ویروس، ویژگی‌های ژنوم آن و ارزیابی با شواهد علمی از پیش موجود در زمینه‌ی کروناویروس‌ها، راهکارهای پیش رو در پاتوژنز، درمان و طراحی و تولید واکسن علیه آن ارایه شود.یافته‌ها: واکاوی و مقایسه‌ی ژنوم کروناویروس جدید با دیگر اعضای این خانواده، نشان دهنده‌ی شباهت زیاد بخش‌های مختلف ژنوم با انواع بیماری‌زای قبلی SARS و (Middle East Respiratory Syndrome) MERS می‌باشد و منشأگیری آن از گونه‌هایی با میزبان خفاش را نشان می‌دهد.نتیجه‌گیری: با توجه به اضطرار شناخت و معرفی راهکارهای درمانی و پیش‌گیرانه در پاندمی حاضر، شناخت مکانیسم‌های مولکولی درگیر در تکثیر و عفونت‌زایی ویروس بر پایه‌ی شباهت ژنوم آن با دیگر هم‌خانواده‌های کرونا ویروسی و همچنین، ویروس‌های دیگر، امکان پیش‌بینی راهبردهای فوری و امیدبخش را در مواجهه با ویروس فراهم می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

An Overview on the Genomic Characteristics of the New Coronavirus (2019-nCoV) and the Prospective in Pathogenesis and Treatment of COVID-19 Infection

نویسندگان [English]

  • Somayeh Mirzaaghaei 1
  • Hossein Mirhendi 2
1 PhD in Molecular Genetics, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection (coronavirus disease-2019 or COVID-19) in China since late 2019 and its global distribution has attracted a big international attention. As 2019-nCov is an emerging pathogen, extending our knowledge about the similarities/differences of this virus with other members of the Coronaviridae family, its genetic characteristics, and pathogenesis could be beneficial to develop better strategies of diagnosis, control, and treatment. This pandemic disease is still so new to be fully identified, and there is a long way ahead for complete characterization of SARS-COV-2 and its disease.Methods: In this study, we investigated the most recent publications from December 2019 to April 2020 on general and genetic features of SARS-COV-2, evaluating the results with primarily approved data about coronaviruses.Findings: Genetic analysis of SARS-CoV-2 comparing with primarily introduced species indicated high similarity with SARS and Middle East Respiratory Syndrome (MERS) indicating bat source of the emergence.Conclusion: Approving the molecular biologic and pathologic similarities between SARS-CoV-2 and previously studied viruses provides prospective for pathogenesis, therapeutics, and development of vaccines, which is more valuable in emergencies of this new pandemic infection.

کلیدواژه‌ها [English]

  • : Coronavirus
  • COVID-19
  • SARS-CoV-2
  • Genomics
  • Therapeutics
  1. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
  2. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). Treasure Island, FL, StatPearls Publishing; 2020.
  3. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
  4. Restaurant-associated scombroid fish poisoning--Alabama, Tennessee. MMWR Morb Mortal Wkly Rep 1986; 35(16): 264-5.
  5. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. Global patterns in coronavirus diversity. Virus Evol 2017; 3(1): vex012.
  6. Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015; 21(12): 1508-13.
  7. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
  8. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
  9. Woo PC, Lau SK, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 2009; 234(10): 1117-27.
  10. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
  11. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
  12. Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol 2020; 79: 104211.
  13. Enjuanes L, Zuniga S, Castano-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res 2016; 96: 245-86.
  14. Tang JW, Tambyah PA, Hui DSC. Emergence of a novel coronavirus causing respiratory illness from Wuhan, China. J Infect 2020; 80(3): 350-71.
  15. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020; 14(4): 3822-35.
  16. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
  17. Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol 2005; 287: 1-30.
  18. He ML, Zheng BJ, Chen Y, Wong KL, Huang JD, Lin MC, et al. Development of interfering RNA agents to inhibit SARS-associated coronavirus infection and replication. Hong Kong Med J 2009; 15(3 Suppl 4): 28-31.
  19. Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 2006; 353(2): 294-306.
  20. Li G, De CE. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
  21. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
  22. Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 2020; 21(5): 730-8.
  23. Dayer MR, Taleb-Gassabi S, Dayer MS. Lopinavir; a potent drug against coronavirus infection: Insight from molecular docking study. Arch Clin Infect Dis 2017; 12(4): e13823.
  24. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
  25. Carmona-Bayonas A, Jimenez-Fonseca P, Castanon E. a trial of lopinavir-ritonavir in covid-19. N Engl J Med 2020; 382(21): e68.
  26. Ratia K, Pegan S, Takayama J, Sleeman K, Coughlin M, Baliji S, et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci USA 2008; 105(42): 16119-24.
  27. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
  28. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
  29. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017; 93(7): 449-63.
  30. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 2014; 20: 42-6.
  31. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
  32. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe covid-19. N Engl J Med 2020; 382(24): 2327-36.
  33. Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014; 508(7496): 402-5.
  34. Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: Target, mechanism of action, and therapeutic potential. Rev Med Virol 2012; 22(1): 2-17.
  35. Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BS. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One 2012; 7(11): e50366.
  36. Park BK, Maharjan S, Lee SI, Kim J, Bae JY, Park MS, et al. Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep 2019; 52(6): 397-402.
  37. Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci 2020; 16(10): 1718-23.
  38. Lusvarghi S, Bewley CA. Griffithsin: An antiviral lectin with outstanding therapeutic potential. Viruses 2016; 8(10).
  39. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
  40. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
  41. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6: 11.
  42. Han DP, Penn-Nicholson A, Cho MW. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology 2006; 350(1): 15-25.
  43. Chaparro JD, Cheng T, Tran UP, Andrade RM, Brenner SBT, Hwang G, et al. Two key cathepsins, TgCPB and TgCPL, are targeted by the vinyl sulfone inhibitor K11777 in in vitro and in vivo models of toxoplasmosis. PLoS One 2018; 13(3): e0193982.
  44. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Jr., Nunneley JW, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015; 116: 76-84.
  45. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014; 58(8): 4885-93.
  46. World Health Organization. Targeted Update: Safety and efficacy of hydroxychloroquine or chloroquine for treatment of COVID-19 [Online]. [cited 2020 Jun 17]; Available from: URL: https://www.who.int/publications/m/item/targeted-update-safety-and-efficacy-of-hydroxychloroquine-or-chloroquine-for-treatment-of-covid-19
  47. Bleyzac N, Goutelle S, Bourguignon L, Tod M. Azithromycin for COVID-19: More than just an antimicrobial? Clin Drug Investig 2020; 40(8): 683-6.
  48. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
  49. Silva JC, Mariz HA, Rocha LF, Oliveira PS, Dantas AT, Duarte AL, et al. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (Sao Paulo) 2013; 68(6): 766-71.
  50. Harvard Medical School. Treatments for COVID-19: What helps, what doesn't, and what's in the pipeline. Harvard Health Publishing [Online 2020 Aug 24]. [cited]; Available from: URL: https://www.health.harvard.edu/diseases-and-conditions/treatments-for-covid-19
  51. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Bruggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020; 75(7): 1564-81.
  52. Gavrilov K, Saltzman WM. Therapeutic siRNA: Principles, challenges, and strategies. Yale J Biol Med 2012; 85(2): 187-200.
  53. Levanova A, Poranen MM. RNA interference as a prospective tool for the control of human viral infections. Front Microbiol 2018; 9: 2151.
  54. Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and development on therapeutic agents and vaccines for covid-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31.
  55. Jung SY, Kang KW, Lee EY, Seo DW, Kim HL, Kim H, et al. Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine 2018; 36(24): 3468-76.
  56. Wang C, Zheng X, Gai W, Wong G, Wang H, Jin H, et al. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res 2017; 140: 55-61.
  57. Coleman CM, Venkataraman T, Liu YV, Glenn GM, Smith GE, Flyer DC, et al. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine 2017; 35(12): 1586-9.
  58. Kelly E. The race for a COVID-19 vaccine: A look at some of the main research teams working to develop a vaccine [Online]. [cited 2020 Mar 23]; Available from: URL: https://sciencebusiness.net/covid-19/news/race-covid-19-vaccine
  59. National Institutes of Health. NIH clinical trial of investigational vaccine for COVID-19 begins [Online]. [cited 2020 Mar 16]; Available from: URL: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins
  60. World Health Organization. Draft landscape of COVID-19 candidate vaccines [Online]. [cited 2020 Sep 22]; Available from: URL: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines