دوره 31، شماره 263: هفته اول بهمن ماه 1392:1973-1984

ارزیابی سمیت نانو میله‏ های اکسید آهن بر رده‌ی سلولی 929L

سریه قاسم‌پور, محمدعلی شکرگزار, رقیه قاسم‌پور, محسن علیپور

چکیده


مقدمه: کاربردهای عمده‏ی نانو فن‌آوری در صنعت، کشاورزی، بیولوژی و پزشکی رو به افزایش است. با توجه به گستره‏ی وسیع نانو ساختار‌ها در علوم پزشکی، این پژوهش با هدف ارزیابی سمیت سلولی نانو ذرات اکسید آهن از طریق مقایسه‌ی میزان زیست پذیری و آپوپتوز سلولی، انجام شد.

روش‌ها: در این مطالعه، نانو میله‌ها به روش هم‌رسوبی ساخته شدند. برای تعیین اندازه و شکل نانو ساختار‏ها، از میکروسکوپ الکترونی عبوری و میکروسکوپ الکترونی روبشی استفاده شد. دوزهای μg/ml 200 و 800 نانو میله‌ها با پوشش اوره و پلی اتیلن گلیکول و به شکل اصلاح شده و نشده، در 48 و 72 ساعت از طریق آزمایش MTT مورد ارزیابی سمیت قرار گرفتند.

یافته‌ها: نانو میله‏های اکسید آهن با پوشش اوره، به شکل میله‏ای با اندازه‏ی طولی nm 150 و اندازه‏ی قطر nm 15 و نانو میله‏های اکسید آهن با پوشش PEG (Polyethylene glycol) دارای طول nm 150 و قطر nm 23 بودند. زیست پذیری سلول‌های قرار گرفته در معرض نانو میله‎های اکسید آهن اصلاح نشده، نسبت به نوع اصلاح شده‎ی آن کمتر بود. این سمیت، با افزایش دوز روند صعودی نشان داد. زیست پذیری سلول‌های قرار گرفته در معرض نانو میله‎های اکسید آهن با پوشش PEG کمتر از نانو میله‌های دارای پوشش اوره بودند.

نتیجه‌گیری: افزایش مرگ سلولی توسط نانو میله‏های اصلاح نشده، می‏تواند ناشی از تشکیل حلقه‏ی پروتئینی به دور این نانو میله‏ها در محیط حاوی پروتئین باشد. علاوه بر این، افزایش مرگ سلولی توسط نانو میله‏های دارای پوشش PEG در مقایسه با اوره، بیانگر تأثیر نوع پوشش و نوع سلول مورد مطالعه بر سمیت سلولی آن‌ها است.


واژگان کلیدی


نانو میله‏ های اکسید آهن؛ زیست پذیری؛ مرگ سلولی؛ MTT

تمام متن:

PDF

مراجع


Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 2012; 112(4): 2323-38.

Rouch DA, Lee BT, Morby AP. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 1995; 14(2): 132-41.

Mahmoudi M, Simchi A, Vali H, Imani M, Shokrgozar MA, Azadmanesh K, et al. Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts. Advanced Engineering Materials 2009; 11(12): B243-B50.

Helmus MN. How to commercialize nanotechnology. Nat Nanotechnol 2006; 1(3): 157-8.

Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y, et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 2009; 20(37): 375101.

Liu G, Lin Y. A renewable electrochemical magnetic immunosensor based on gold nanoparticle labels. J Nanosci Nanotechnol 2005; 5(7): 1060-5.

Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldofner N, et al. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 2005; 64(3): 283-92.

O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004; 209(2): 171-6.

Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7): 975-83.

Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 2002; 294(1): 116-9.

Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. Effect of nanoparticles on the cell life cycle. Chem Rev 2011; 111(5): 3407-32.

Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6(8): 1794-807.

Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.

Van HB, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 2006; 5(2): 145-52.

Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004; 77(1): 126-34.

An X, Su Z. Characterization and application of high magnetic property chitosan particles. Journal of Applied Polymer Science 2001; 81(5): 1175-81.

Carmen Bautista M, Bomati-Miguel O, Morales MDP, Serna CJ, Veintemillas-Verdaguer S. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. Journal of Magnetism and Magnetic Materials 2005; 293(1): 20-7.

Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A, Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 2002; 13(1): 122-7.

Lee J, Senna M, Isobe T. Preparation of ultrafine Fe3O4particles by precipitation in the presence of PVA at high pH. Journal of Colloid and Interface Science 1996; 177(2): 490-4.

Massia SP, Stark J, Letbetter DS. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 2000; 21(22): 2253-61.

Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003; 24(13): 2339-49.

Albornoz C, Jacobo SE. Preparation of a biocompatible magnetic film from an aqueous ferrofluid. Journal of Magnetism and Magnetic Materials 2006; 305(1): 12-5.

Osada Y, Gong JP. Soft and wet materials: polymer gels. Advanced Materials 1998; 10(11): 827-37.

Latham VH, Ducut JL, Rostamiani K, Chun HH, Lopez ME, Herrera S, et al. A rapid lectin receptor binding assay: comparative evaluation of sea urchin embryo cell surface lectin receptors. Acta Histochem 1995; 97(1): 89-97.

Berry CC, Wells S, Charles S, Curtis AS. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 2003; 24(25): 4551-7.

Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 2004; 15(4): 493-6.

Hilger I, Kiessling A, Romanus E, Hiergeist R, Hergt R, Andra W, et al. Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation. Nanotechnology 2004; 15(8): 1027-32.

Ghasemi F. Determination of protein absorption profile at the surface of biocompatible superparamagnetic iron oxide nanoparticles using gel electrophoresis [PhD Thesis]. Tehran, Iran: Sharif University of Technology; 2012.

Ian Freshney R. Culture of animal cells: a manual of basic technique. 5th ed. Hoboken, NJ: Wiley-Liss; 2005.

Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials 2004; 16(12): 961-6.

AshaRani PV, Low Kah MG, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279-90.

Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 2010; 75(1): 300-9.

Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P. An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 2009; 20(22): 225104.

Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111(9): 5610-37.

Seo JH, Moon HS, Guo DD, Lee HG, Choi YJ, Cho CS. PEGylation of conjugated linoleic acid and its application as an anti-cancer prodrug. Key Engineering Materials 2007; 342(343): 441-4.

Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005; 10(21): 1451-8.

Seo JH, Moon HS, Kim IY, Guo DD, Lee HG, Choi YJ, et al. PEGylated conjugated linoleic acid stimulation of apoptosis via a p53-mediated signaling pathway in MCF-7 breast cancer cells. Eur J Pharm Biopharm 2008; 70(2): 621-6.

Vangara KK, Liu JL, Palakurthi S. Hyaluronic acid-decorated PLGA-PEG nanoparticles for targeted delivery of SN-38 to ovarian cancer. Anticancer Res 2013; 33(6): 2425-34.

Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, et al. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 2013; 8: 961-70.

Chaston TB, Lovejoy DB, Watts RN, Richardson DR. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin Cancer Res 2003; 9(1): 402-14.

Gao J, Richardson DR. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Blood 2001; 98(3): 842-50.

Kulp KS, Green SL, Vulliet PR. Iron deprivation inhibits cyclin-dependent kinase activity and decreases cyclin D/CDK4 protein levels in asynchronous MDA-MB-453 human breast cancer cells. Exp Cell Res 1996; 229(1): 60-8.

Simonart T, Degraef C, Andrei G, Mosselmans R, Hermans P, Van Vooren JP, et al. Iron chelators inhibit the growth and induce the apoptosis of Kaposi's sarcoma cells and of their putative endothelial precursors. J Invest Dermatol 2000; 115(5): 893-900.

Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009; 30(22): 3645-51.




Creative Commons Attribution-NonCommercial 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.