دوره 33، شماره 323: هفته سوم فروردین ماه 1394:160-170

بررسی خصوصیات اپتیکی، فیزیکی و کوانتومی نانوذرات طلا و کاربردهای آن در تشخیص و درمان سرطان‌ها

زهرا عرب بافرانی , داریوش شهبازی گهرویی

چکیده


نانوذرات طلا از پتانسیل بالایی برای تشخیص، بهبود و درمان سرطان برخوردار هستند. زیست پذیری بالا، تجمع انتخابی در سلول‌های سرطانی و سمیت پایین از جمله مزیت‌های این ذرات می‌باشد. تحقیقات قابل توجهی به استفاده از نانوذرات طلا به عنوان عامل افزایش دهنده‌ی کنتراست تصویربرداری رامان و تصویربرداری پرتو ایکس و نیز عامل گرمادرمانی و افزایش دهنده‌ی حساسیت پرتویی تومور پرداخته است. در مطالعه‌ی حاضر، خصوصیات اپتیکی، فیزیکی و کوانتومی نانوذرات طلا و همچنین چگونگی استفاده از این خصوصیات در زمینه‌های تشخیصی و درمانی سرطان مورد بحث و بررسی قرار گرفته است.


واژگان کلیدی


نانوذرات طلا؛ فیزیکی و کوانتومی؛ تشخیص و درمان سرطان

تمام متن:

PDF

مراجع


Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64(1): 9-29.

Shahbazi-Gahrouei D, Williams M, Rizvi S, Allen BJ. In vivo studies of Gd-DTPA-monoclonal antibody and gd-porphyrins: potential magnetic resonance imaging contrast agents for melanoma. J Magn Reson Imaging 2001; 14(2): 169-74.

Shahbazi-Gahrouei D, Rizvi SM, Williams MA, Allen BJ. In vitro studies of gadolinium-DTPA conjugated with monoclonal antibodies as cancer-specific magnetic resonance imaging contrast agents. Australas Phys Eng Sci Med 2002; 25(1): 31-8.

Shahbazi-Gahrouei D, Williams M, Allen BJ. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength. Australas Radiol 2001; 45(3): 298-304.

Shahbazi-Gahrouei D, Williams M, Allen BJ. Synthesis and application of Gadolinium -porpyrins as MR imaging agent for cancer detection. Iran Biomed J 2001; 5(2-3): 87-95.

Shahbazi-Gahrouei D. Novel MR imaging contrast agents for cancer detection. J Res Med Sci 2009; 14(3): 141-7.

Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007; 3(11): 1840-54.

Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008; 1: 17-32.

Shahbazi-Gahrouei D, Abdolahi M. A novel method for quantitative analysis of anti-MUC1 expressing ovarian cancer cell surface based on magnetic cell separation. Int J Med Sci 2012; 12: 256-66.

Abdolahi M, Shahbazi-Gahrouei D, Laurent S, Sermeus C, Firozian F, Allen BJ, et al. Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer. Contrast Media Mol Imaging 2013; 8(2): 175-84.

Shahbazi-Gahrouei D, Abdolahi M, Zarkesh-Esfahani SH, Laurent S, Sermeus C, Gruettner C. Functionalized magnetic nanoparticles for the detection and quantitative analysis of cell surface antigen. Biomed Res Int 2013; 2013: 349408.

Shahbazi-Gahrouei D, Ghasemian Z, Abdolahi M, Manouchehri S, Javanmard Sh, et al. In vitro Evaluation of Cobalt-Zinc Ferrite Nanoparticles Coated with DMSA on Human Prostate Cancer Cells. J Mol Biomark Diagn 2013; 4(3): 154.

Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 2011; 22(15): 155101.

Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010; 12(7): 2313-33.

Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010; 1(1): 13-28.

Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41(12): 1578-86.

Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; 41(12): 1842-51.

Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005; 109(29): 13857-70.

Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res 2008; 41(12): 1587-95.

Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, et al. Chemical sensing and imaging with metallic nanorods. Chem Commun (Camb ) 2008; (5): 544-57.

Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater 2008; 7(6): 442-53.

Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008; 26(1): 83-90.

Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 2007; 7(6): 1591-7.

Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 2007; 7(7): 1914-8.

Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 2010; 11(6): 561-70.

van der Zee J, Gonzalez GD, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000; 355(9210): 1119-25.

Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 1996; 35(4): 731-44.

Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3(8): 487-97.

Cherukuri P, Curley SA. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol 2010; 624: 359-73.

Hainfeld JF, Lin L, Slatkin DN, Avraham DF, Vadas TM, Smilowitz HM. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine 2014; 10(8): 1609-17.

Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100(23): 13549-54.

Jain S, Hirst DG, O'Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13.

Essig M, Debus J, Schlemmer HP, Hawighorst H, Wannenmacher M, van KG. [Improved tumor contrast and delineation in the stereotactic radiotherapy planning of cerebral gliomas and metastases with contrast media-supported FLAIR imaging]. Strahlenther Onkol 2000; 176(2): 84-94.

Bushong SC. Radiologic science for technologists: physics, biology, and protection. 9th ed. Philadelpia, PA: Mosby; 2015.165-8.

Jackson PA, Rahman WN, Wong CJ, Ackerly T, Geso M. Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 2010; 75(1): 104-9.

Yusa N, Jiang M, Mizuno K, Uesaka M. Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiol Phys Technol 2009; 2(1): 33-9.

Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, et al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 2012; 7: 190.

Wang Z, Wu L, Cai W. Size-tunable synthesis of monodisperse water-soluble gold nanoparticles with high X-ray attenuation. Chemistry 2010; 16(5): 1459-63.

Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005; 21(23): 10644-54.

Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012; 33(27): 6408-19.

Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004; 49(18): N309-N315.

Zheng Y, Hunting DJ, Ayotte P, Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 2008; 169(1): 19-27.

Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 2011; 79(2): 531-9.

Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 2009; 5(2): 136-42.

Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011; 22(28): 285101.

Chithrani DB, Jelveh S, Jalali F, van PM, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010; 173(6): 719-28.

McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol 2011; 100(3): 412-6.

McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 2011; 1: 18.

Xiao F, Zheng Y, Cloutier P, He Y, Hunting D, Sanche L. On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 2011; 22(46): 465101.




Creative Commons Attribution-NonCommercial 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.