تهیه‌ی کونژوگه‌ی پلی‌ساکارید کپسولی نایسریا مننژیتیدیس سروتایپ A با پروتئین ریکامبیننت هپاتیت B به عنوان یک ایمونوژن (تهیه‌ی ایمونوژن از مننژیت و هپاتیت B)

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 کارشناس ارشد، گروه میکروبیولوژی، دانشکده‌ی علوم، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران

2 دانشیار، بخش تهیه واکسن‌های باکتریایی و آنتی‌ژن انستیتو پاستور، مجتمع تولیدی تحقیقاتی انستیتو پاستور ایران، تهران، ایران

3 استاد، گروه میکروبیولوژی، دانشکده‌ی علوم، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران

چکیده

مقدمه: پلی‌ساکارید کپسولی نایسریا مننژیتیدیس سروتایپ A (Neisseria meningitidis capsule یا NMA-CPS) واکسن خوبی برای بیماری مننژیت محسوب می‌شود؛ اما به دلیل این ‌که پاسخ ایمنی نسبت به این پلی‌ساکارید غیر وابسته به سلول T است و سلول خاطره در پاسخ ایمنی ایجاد نمی‌گردد، دوز یادآور (Booster dose) آن تأثیری در بالا بردن سطح ایمنی ندارد. در مطالعه‌ی حاضر، پلی‌ساکارید NMA-CPS به طور کووالان به پروتئین ریکامبیننت هپاتیت B (Recombinant hepatitis B surface antigen یا rHbsAg) متصل گردید.روش‌ها: HbsAg با روش آمیداسیون برای ایجاد یک ایمونوژن دو ظرفیتی مفید و مؤثر، به NMA-CPS کونژوگه شد. کونژوگه و پلی‌ساکارید NMA-CPS به تنهایی به تعدادی خرگوش سفید آزمایشگاهی در سه نوبت به فاصله‌ی 15 روز تزریق گردید و سپس خون‌گیری و جمع‌آوری سرم و بررسی توان باکتری‌کشی سرم با استفاده از روش سرم باکتریسیدال (Serum bactericidal assay یا SBA) صورت گرفت.یافته‌ها: تزریق اول کونژوگه و پلی‌ساکارید تنها، تیتر باکتری‌کشی خوبی را القا نمودند؛ اما کونژوگه در تزریق دوم، تیتر بالاتری را نسبت به پلی‌ساکارید تنها و تزریق اول کونژوگه ایجاد کرد.نتیجه‌گیری: نتایج نشان دهنده‌ی ایجاد سلول‌های خاطره و تأثیر دوز یادآور در بالا بردن سطح ایمنی می‌‌باشد؛ در حالی که تیتر باکتری‌کشی پلی‌ساکارید تنها، در تزریق دوم تغییر کمی داشت؛ این یافته به این دلیل است که پاسخ ایمنی نسبت به این پلی‌ساکارید غیر وابسته به سلول T می‌باشد و سلول خاطره‌ای در پاسخ ایمنی ایجاد نمی‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of ConjugateD Neisseria Meningitidis Type A Capsular Polysaccharide with Recombinant Protein of Hepatitis B as an Immunogen

نویسندگان [English]

  • Mahboobeh Mohamadamini 1
  • Hojat Ahmadi 2
  • Bahman Tabaraie 3
1 Department of Microbiology, School of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Associate Professor, Department of Bacterial Vaccine and Antigen Production, Pasteur Institute of Iran, Tehran, Iran
3 Professor, Department of Microbiology, School of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
چکیده [English]

Background: Polysaccharide vaccines are effective in individuals from about the two years of age but, as they elicit T-cell independent immunity, they are not effective in younger children. In contrast, polysaccharide-protein conjugates are shown to be highly immunogenic in infants and induce T-cell dependent immunity.Methods: In this study, capsular polysaccharide of Neisseria meningitidis type A (NMA-CPS) was attached to recombinant protein of hepatitis B surface antigen (rHbsAg) covalently using amidation method. Immunization was done, choosing 2 groups of rabbits. Pure NMA-CPS and conjugated molecule were injected to groups 1 and 2, with a 15-day interval, intramuscularly. The bleeding was performed at days 0, 15, 30, 45 and titers of sera were measured via serum bactericidal assay.Findings: Polysaccharide bactericidal titer on days 15, 30 and 45 was almost identical and there was no increase in titer. But, in the first injection of the conjugate, the titer was much more (about twice of purified polysaccharide), and in the second injection, increased.Conclusion: Results display that conjugated molecules cause more immunity than pure capsular polysaccharide, and can stimulate cellular immunity.

کلیدواژه‌ها [English]

  • Neisseria meningitidis type A
  • Conjugate
  • Immunogen
  • Recombinant protein
  • Hepatitis B
  • Serum bactericidal assay
  1. Adibfar P. Medical microbiology. 3rd ed. Tehran, Iran; Noor-e-Danesh Publications; 1982. p. 480-8.
  2. [In Persian].
  3. Brooks GF, Carroll KC, Butel JS, Morse SA, Mietzner TA. Jawetz, Melnick, and Adelbergs medical microbiology. 25th ed. New York, NY: McGraw-Hil Publishing Company; 2010.
  4. Malekzadeh F. Microbiology. Tehran, Iran: Tehran University Press; 1992. p. 173-82. [In Persian].
  5. Namavar H, Zarabi M. Dorland's medical dictionary. Tehran, Iran; Yadvareh-Ketab Publications; 1993. p. 60-95. [In Persian].
  6. Mandell GL, Bennett JE, Dolin R. Principles and practice of infectious diseases. 6th ed. London, UK: Churchill Livingstone; 2004. p. 1079-171, 2498-513.
  7. Goldman L, Ausiello D. Cecil textbook of medicine. 22nd ed. Philadelphia, PA: Saunders; 2004. p. 1728-1930.
  8. Schaechter M, Engleberg NC, Eisenstein BI, Medoff G. Mechanisms of microbial disease. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 1999. p. 535-49.
  9. Nester EW, Roberts CE, Pearsal NN, Anderson DG, Nester MT. Microbiology: A human perspective. 2nd ed. New York, NY: McGraw-Hill; 1998. p. 626-49.
  10. Collier L, Balows A, Sussman M. Topley and Wilson's, Microbiology and microbial infection: Bacterial infection. 9th. New York, NY: Oxford University Press; 1998. p. 299-318, 887-90.
  11. George Ray CG, Sherris JC, Ryan KJ. Sherris medical microbiology: An introduction to infectious diseases. 4th ed. New York, NY: McGraw-Hill Medical; 2003. p. 873-80.
  12. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal disease. N Engl J Med 2001; 344(18): 1378-88.
  13. Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med 1997; 336(10): 708-16.
  14. Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002; 186(Suppl 2): S225-S233.
  15. Jodar L, Feavers IM, Salisbury D, Granoff DM. Development of vaccines against meningococcal disease. Lancet 2002; 359(9316): 1499-508.
  16. Morley SL, Pollard AJ. Vaccine prevention of meningococcal disease, coming soon? Vaccine 2001; 20(5-6): 666-87.
  17. van Deuren M, Brandtzaeg P, van der Meer JW. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 2000; 13(1): 144-66, table.
  18. Kyaw MH, Clarke SC, Christie P, Jones IG, Campbell H. Invasive meningococcal disease in Scotland, 1994 to 1999, with emphasis on group B meningococcal disease. J Clin Microbiol 2002; 40(5): 1834-7.
  19. Cartwright K, Noah N, Peltola H. Meningococcal disease in Europe: epidemiology, mortality, and prevention with conjugate vaccines. Report of a European advisory board meeting Vienna, Austria, 6-8 October, 2000. Vaccine 2001; 19(31): 4347-56.
  20. Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL. Harrison's principles of internal medicine. 15th ed. New York, NY: McGraw-Hill; 2001. p. 927-30.
  21. Pollard AJ, Moxon ER. The meningococcus tamed? Arch Dis Child 2002; 87(1): 13-7.
  22. Winstead JM, McKinsey DS, Tasker S, de Groote MA, Baddour LM. Meningococcal pneumonia: characterization and review of cases seen over the past 25 years. Clin Infect Dis 2000; 30(1): 87-94.
  23. MacLennan J, Obaro S, Deeks J, Lake D, Elie C, Carlone G, et al. Immunologic memory 5 years after meningococcal A/C conjugate vaccination in infancy. J Infect Dis 2001; 183(1): 97-104.
  24. Forbes BA, Sahm DF, Weissfeld AS. Baliey and Scott's: Diagnostic microbiology. 11th ed. Philadelphia, PA: Mosbey; 2002. p. 502-11.
  25. Macfadin JF. Biochemical tests for identification of medical bacteria. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2000. p. 333-48.
  26. Stuart Walker T. Microbiology. Philadelphia, PA: Saunders; 1998. p. 140-3.
  27. Dieckelmann M, Roddam LF, Jennings MP. Purification of post-translationally modified proteins from bacteria: homologous expression and purification of histidine-tagged pilin from Neisseria meningitidis. Protein Expr Purif 2003; 30(1): 69-77.
  28. Tonjum T, Caugant DA, Dunham SA, Koomey M. Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol Microbiol 1998; 29(1): 111-24.
  29. Massari P, Ram S, Macleod H, Wetzler LM. The role of porins in neisserial pathogenesis and immunity. Trends Microbiol 2003; 11(2): 87-93.
  30. van der Ley P, Heckels JE, Virji M, Hoogerhout P, Poolman JT. Topology of outer membrane porins in pathogenic Neisseria spp. Infect Immun 1991; 59(9): 2963-71.
  31. Lang H. Outer membrane proteins as surface display systems. Int J Med Microbiol 2000; 290(7): 579-85.
  32. Jansen C, Wiese A, Reubsaet L, Dekker N, de CH, Seydel U, et al. Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochim Biophys Acta 2000; 1464(2): 284-98.
  33. Sacchi CT, Lemos AP, Popovic T, de Morais JC, Whitney AM, Melles CE, et al. Serosubtypes and PorA types of Neisseria meningitidis serogroup B isolated in Brazil during 1997--1998: overview and implications for vaccine development. J Clin Microbiol 2001; 39(8): 2897-903.
  34. van den Elsen J, Vandeputte-Rutten L, Kroon J Gros P. Bactericidal antibody recognition of meningococcal Por A by induced fit. J Bio Chem 1999; 274(3): 1495-501.
  35. Vermont CL, van Dijken HH, Kuipers AJ, van Limpt CJ, Keijzers WC, van der Ende A, et al. Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine. Infect Immun 2003; 71(4): 1650-5.
  36. van der Voort ER, van DH, Kuipers B, van der Biezen J, van der Ley P, Meylis J, et al. Human B- and T-cell responses after immunization with a hexavalent PorA meningococcal outer membrane vesicle vaccine. Infect Immun 1997; 65(12): 5184-90.
  37. Christodoulides M, Rattue E, Heckels JE. Effect of adjuvant composition on immune response to a multiple antigen peptide (MAP) containing a protective epitope from Neisseria meningitidis class 1 porin. Vaccine 1999; 18(1-2): 131-9.
  38. Milagres LG, Gorla MC, Sacchi CT, Rodrigues MM. Specificity of bactericidal antibody response to serogroup B meningococcal strains in Brazilian children after immunization with an outer membrane vaccine. Infect Immun 1998; 66(10): 4755-61.
  39. van der Voort ER, van der Ley P, van der Biezen J, George S, Tunnela O, van DH, et al. Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine. Infect Immun 1996; 64(7): 2745-51.
  40. Peeters CC, Rumke HC, Sundermann LC, Rouppe van der Voort EM, Meulenbelt J, Schuller M, et al. Phase I clinical trial with a hexavalent PorA containing meningococcal outer membrane vesicle vaccine. Vaccine 1996; 14(10): 1009-15.
  41. Wright JC, Williams JN, Christodoulides M, Heckels JE. Immunization with the recombinant PorB outer membrane protein induces a bactericidal immune response against Neisseria meningitidis. Infect Immun 2002; 70(8): 4028-34.
  42. van der Ley P, Poolman JT. Construction of a multivalent meningococcal vaccine strain based on the class 1 outer membrane protein. Infect Immun 1992; 60(8): 3156-61.
  43. Michaelsen TE, Aase A, Kolberg J, Wedge E, Rosenqvist E. PorB3 outer membrane protein on Neisseria meningitidis is poorly accessible for antibody binding on live bacteria. Vaccine 2001; 19(11-12): 1526-33.
  44. Tappero JW, Lagos R, Ballesteros AM, Plikaytis B, Williams D, Dykes J, et al. Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. JAMA 1999; 281(16): 1520-7.
  45. Henderson B, Wilson M, McNab R, Lax AJ. Cellular microbiology: Bacteria- Host interactions in health and disease. Hoboken, NJ: John Wiley and Sons; 2000. p. 191-271, 311-55.
  46. Mirlashari MR, Hoiby EA, Holst J, Lyberg T. Outer membrane vesicles from Neisseria meningitidis: effects on cytokine production in human whole blood. Cytokine 2001; 13(2): 91-7.
  47. Pollard AJ, Frasch C. Development of natural immunity to Neisseria meningitidis. Vaccine 2001; 19(11-12): 1327-46.
  48. Al'Aldeen AA, Cartwright KA. Neisseria meningitidis: vaccines and vaccine candidates. J Infect 1996; 33(3): 153-7.
  49. Rappuoli R, Normark S, Cossart PF. Cellular microbiology. Washington,DC: American Society Microbiology; 2000. p. 68-94, 291-310.
  50. Fukasawa LO, Gorla MC, Lemos AP, Schenkman RP, Brandileone MC, Fox JW, et al. Immune response to native NadA from Neisseria meningitidis and its expression in clinical isolates in Brazil. J Med Microbiol 2003; 52(Pt 2): 121-5.
  51. Martin D, Cadieux N, Hamel J, Brodeur BR. Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J Exp Med 1997; 185(7): 1173-83.
  52. Cadieux N, Plante M, Rioux CR, Hamel J, Brodeur BR, Martin D. Bactericidal and cross-protective activities of a monoclonal antibody directed against Neisseria meningitidis NspA outer membrane protein. Infect Immun 1999; 67(9): 4955-9.
  53. Moe GR, Tan S, Granoff DM. Differences in surface expression of NspA among Neisseria meningitidis group B strains. Infect Immun 1999; 67(11): 5664-75.
  54. Moe GR, Zuno-Mitchell P, Lee SS, Lucas AH, Granoff DM. Functional activity of anti-Neisserial surface protein A monoclonal antibodies against strains of Neisseria meningitidis serogroup B. Infect Immun 2001; 69(6): 3762-71.
  55. Turner PC, Thomas CE, Stojiljkovic I, Elkins C, Kizel G, Ala'Aldeen DA, et al. Neisserial TonB-dependent outer-membrane proteins: detection, regulation and distribution of three putative candidates identified from the genome sequences. Microbiology 2001; 147(Pt 5): 1277-90.
  56. Peak IR, Srikhanta Y, Dieckelmann M, Moxon ER, Jennings MP. Identification and characterisation of a novel conserved outer membrane protein from Neisseria meningitidis. FEMS Immunol Med Microbiol 2000; 28(4): 329-34.
  57. Bhattacharjee AK, Moran EE, Ray JS, Zollinger WD. Purification and characterization of H.8 antigen from group B Neisseria meningitidis. Infect Immun 1988; 56(4): 773-8.
  58. Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J, Arico B, et al. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med 2003; 197(6): 789-99.
  59. Welsch JA, Moe GR, Rossi R, Adu-Bobie J, Rappuoli R, Granoff DM. Antibody to Genome-Derived Neisserial Antigen 2132, a Neisseria meningitidis Candidate Vaccine, Confers Protection against Bacteremia in the Absence of Complement-Mediated Bactericidal Activity. Journal of Infectious Diseases 2003; 188(11): 1730-40.
  60. Ruggeberg JU, Pollard AJ. Meningococcal vaccines. Paediatr Drugs 2004; 6(4): 251-66.
  61. Robbins J B, Hill J C, Sadoff J C. Seminars in infectious diseases IV. Bacterial vaccines. New York, NY: Thieme-Stratton Corp; 1982. p. 242-75.
  62. Gudlavalleti SK, Datta AK, Tzeng YL, Noble C, Carlson RW, Stephens DS. The neisseria meningitidis serogroup a capsular polysaccharide o-3 and o-4 acetyltransferase. J Biol Chem 2004; 279(41): 42765-73.
  63. Jacobsson S, Issa M, Unemo M, Backman A, Molling P, Sulaiman N, et al. Molecular characterisation of group A Neisseria meningitidis isolated in Sudan 1985-2001. APMIS 2003; 111(11): 1060-6.
  64. Jin Z, Chu C, Robbins JB, Schneerson R. Preparation and characterization of group A meningococcal capsular polysaccharide conjugates and evaluation of their immunogenicity in mice. Infect Immun 2003; 71(9): 5115-20.
  65. Berkin A, Coxon B, Pozsgay V. Towards a synthetic glycoconjugate vaccine against Neisseria meningitidis A. Chemistry 2002; 8(19): 4424-33.
  66. Boslego J, Garcia J, Cruz C, Zollinger W, Brandt B, Ruiz S, et al. Efficacy, safety, and immunogenicity of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, Chile. Chilean National Committee for Meningococcal Disease. Vaccine 1995; 13(9): 821-9.
  67. Vermont C, van den Dobbelsteen G. Neisseria meningitidis serogroup B: laboratory correlates of protection. FEMS Immunol Med Microbiol 2002; 34(2): 89-96.
  68. Peltola H. Meningococcal vaccines. Current status and future possibilities. Drugs 1998; 55(3): 347-66.
  69. Diaz RJ, Outschoorn IM. Current status of meningococcal group B vaccine candidates: capsular or noncapsular? Clin Microbiol Rev 1994; 7(4): 559-75.
  70. Plotkin SA, Orenstein WA, Offit PA, Vaccines. 4th ed. Philadelphia, PA: Elsevier, Saunders; 2004. p. 959-87.
  71. Martin SL, Borrow R, van der Ley P, Dawson M, Fox AJ, Cartwright KA. Effect of sequence variation in meningococcal PorA outer membrane protein on the effectiveness of a hexavalent PorA outer membrane vesicle vaccine. Vaccine 2000; 18(23): 2476-81.
  72. Granoff DM, Kelsey SK, Bijlmer HA, van AL, Dankert J, Mandrell RE, et al. Antibody responses to the capsular polysaccharide of Neisseria meningitidis serogroup B in patients with meningococcal disease. Clin Diagn Lab Immunol 1995; 2(5): 574-82.
  73. Lifely MR, Roberts SC, Shepherd WM, Esdaile J, Wang Z, Cleverly A, et al. Immunogenicity in adult males of a Neisseria meningitidis group B vaccine composed of polysaccharide complexed with outer membrane proteins. Vaccine 1991; 9(1): 60-6.
  74. Shin JS, Lin JS, Anderson PW, Insel RA, Nahm MH. Monoclonal antibodies specific for Neisseria meningitidis group B polysaccharide and their peptide mimotopes. Infect Immun 2001; 69(5): 3335-42.
  75. Finne J, Bitter-Suermann D, Goridis C, Finne U. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol 1987; 138(12): 4402-7.
  76. Upreti RK, Kumar M, Shankar V. Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics 2003; 3(4): 363-79.
  77. Zinsser H, Joklik WJ. Zinsser microbiology. 20th ed. New York, NY: Appleton and Lange; 1988. p. 441-63
  78. Rahman MM, Kolli VS, Kahler CM, Shih G, Stephens DS, Carlson RW. The membrane phospholipids of Neisseria meningitidis and Neisseria gonorrhoeae as characterized by fast atom bombardment mass spectrometry. Microbiology 2000; 146 (Pt 8): 1901-11.
  79. Plested JS, Harris SL, Wright JC, Coull PA, Makepeace K, Gidney MA, et al. Highly conserved Neisseria meningitidis inner-core lipopolysaccharide epitope confers protection against experimental meningococcal bacteremia. J Infect Dis 2003; 187(8): 1223-34.
  80. Schwartz B, Moore PS, Broome CV. Global epidemiology of meningococcal disease. Clin Microbiol Rev 1989; 2(Suppl): S118-S124.