دوره 35، شماره 458: هفته دوم بهمن ماه 1396:1732-1737

روشی خودکار برای کمی‌سازی شرایط احساسی فرد به کمک سیگنال الکتروانسفالوگرام

فهیمه پارسایی, علی مالکی, محمد رضا دلیری

DOI: 10.22122/jims.v35i458.8759

چکیده


مقدمه: احساس، یک فرایند روان‌شناسی از ذهن است و علاوه بر این که نقش مهمی در تعاملات بین انسان‌ها دارد، در سال‌های اخیر در تعامل بین انسان و کامپیوتر نیز مورد توجه قرار گرفته است. احساس، دارای ماهیتی مبهم و متنوع است. همچنین، افراد قادر به بیان کمی و دقیق احساس خود نیستند. بنابراین، معیاری کمی برای بازشناسی احساس افراد نیاز است. برای بیان حالات مختلف احساس، مدل دو‌ بعدی خوشایندی- انگیختگی در نظر گرفته شده است. این مطالعه، با هدف ارایه‌ی رهیافتی برای بازشناسی کمی و پیوسته از احساس با استفاده از ویژگی‌های ارتباط عملکردی استخراج شده از الکتروانسفالوگرام (Electroencephalogram یا EEG) و مبتنی بر روش خوشه‌بندی Fuzzy c-means و تلفیق فازی انجام گردید.

روش‌ها: سیگنال‌های الکتروانسفالوگرام افراد در زمان تماشای فیلم، همراه با گزارش فردی آن‌ها از احساس خود در زمان فوق، از پایگاه داده‌ی Database for emotion analysis using physiological signals (DEAP) دریافت شد. سه ویژگی ارتباطات عملکردی سیگنال‌های مغزی شامل همبستگی، مقدار قفل فاز و همدوسی از این سیگنال‌ها استخراج شده‌اند. ویژگی‌ها توسط خوشه‌بندی Fuzzy c-means خوشه‌بندی گردید. در نهایت، با توجه به نمره‌دهی کاربران بر خط و نتایج خوشه‌بندی برای هر ویژگی، مقادیر کمی و پیوسته برای خوشایندی و انگیختگی احساس فرد به دست آمد.

یافته‌ها: صحت 0/079 ± 0/901 برای خوشایندی و 0/083 ± 0/860 برای انگیختگی به دست آمد. ارتباط‌های عملکردی انتخاب شده، مربوط به فعالیت هم‌زمان نواحی بینایی، شنوایی و درک احساس در قشر مغز می‌باشد.

نتیجه‌گیری: صحت نتایج نسبت به مطالعات گذشته که به صورت گسسته، بازشناسی احساس را انجام داده‌اند، به طور قابل ملاحظه‌ای بیشتر است. همچنین، تخمین احساس بر اساس مقدار همدوسی نسبت به دیگر ویژگی‌های بررسی شده، نتیجه‌ی بهتری را ارایه کرده است. نتایج این مطالعه در بهبود تعاملات بین انسان و کامپیوتر و همچنین، در زمینه‌ی بازتوانی شناختی کاربرد دارد.


واژگان کلیدی


الکتروانسفالوگرام؛ Fuzzy logic؛ نقشه‌ی الکتریکی عملکرد مغز

تمام متن:

PDF

مراجع


Konar A, Chakraborty A. Emotion recognition: A pattern analysis approach. Hoboken, NJ: John Wiley and Sons; 2015.

Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, et al. DEAP: A database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 2012; 3(1): 18-31.

Guo Y, Gao H. Emotion recognition system in images based on fuzzy neural network and HMM. Proceedings of the 5th IEEE International Conference on Cognitive Informatics; 2006 Jul 17-19; Beijing, China. p. 73-8.

Posner J, Russell JA, Peterson BS. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev Psychopathol 2005; 17(3): 715-34.

Soleymani M, Pantic M, Pun T. Multimodal emotion recognition in response to videos. IEEE Trans Affect Comput 2012; 3(2): 211-23.

Naji M, Firoozabadi M, Azadfallah P. Emotion classification during music listening from forehead biosignals. Signal Image Video Process 2015; 9(6): 1365-75.

Soleymani M, Lichtenauer J, Pun T, Pantic M. A multimodal database for affect recognition and implicit tagging. IEEE Trans Affect Comput 2012; 3(1): 42-55.

Koelstra S, Patras I. Fusion of facial expressions and EEG for implicit affective tagging. Image Vis Comput 2013; 31(2): 164-74.

Lithari C, Klados MA, Bamidis PD. Graph analysis on functional connectivity networks during an emotional paradigm. Proceedings of the 7th Mediterranean Conference on Medical and Biological Engineering and Computing; 2010 May 27-30; Chalkidiki, Greece. Berlin, Germany: Springer; 2010. p. 115-8.

Chen M, Han J, Guo L, Wang J, Patras I. Identifying valence and arousal levels via connectivity between EEG channels. Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction; 2015 Sep 21-24; Xi'an, China. p. 63-9.

Niso G, Bruna R, Pereda E, Gutierrez R, Bajo R, Maestu F, et al. HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics 2013; 11(4): 405-34.

Pourmohammadi S, Maleki A. An automatic approach to continuous stress assessment during driving based on fuzzy c-means clustering. The Modares Journal of Electrical Engineering 2013; 13(1): 9-17.

Chung SY, Yoon HJ. Affective classification using Bayesian classifier and supervised learning. Proceedings of the 12th International Conference on Control, Automation and Systems; 2012 Oct 17-21; JeJu Island, South Korea. p. 1768-71.

Naser DS, Saha G. Recognition of emotions induced by music videos using DT-CWPT. Proceedings of the 2013 Indian Conference on Medical Informatics and Telemedicine; 2013 Mar 28-30; Kharagpur, India: p. 53-7.

Bahari F, Janghorbani A. EEG-based emotion recognition using Recurrence Plot analysis and K nearest neighbor classifier. Proceedings of the 20th Iranian Conference on Biomedical Engineering; 2013 Dec 18-20; Tehran, Iran. p. 228-33.

Torres-Valencia CA, Garcia-Arias HF, Lopez MAA, Orozco-Gutierrez AA. Comparative analysis of physiological signals and electroencephalogram (EEG) for multimodal emotion recognition using generative models. Proceedings of the 19th Symposium on Image, Signal Processing and Artificial Vision 2014 Sep 17-19; Armenia, Colombia. p. 1-5.

Zhuang X, Rozgiç V, Crystal M. Compact unsupervised EEG response representation for emotion recognition. Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics; 2014 June 1-4; Valencia, Spain. p. 736-9.

Singh BK, Verma K, Thoke AS. Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Systems with Applications 2016; 66(Supplement C): 114-23.

Bastos-Filho TF, Ferreira A, Atencio AC, Arjunan S, Kumar D. Evaluation of feature extraction techniques in emotional state recognition. 2012 p. 1-6.

Nolte J. The human brain: An introduction to its functional anatomy. 6th ed. Philadelphia, PA: Mosby; 2009.




Creative Commons Attribution-NonCommercial 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.