دوره 36، شماره 471: هفته سوم اردیبهشت ماه 1397:221-226

تشخیص استرس از سیگنال الکترومایوگرام عضلات صاف‌کننده ستون مهره‌ها

سارا پورمحمدی, علی مالکی

DOI: 10.22122/jims.v36i471.9642

چکیده


مقدمه: تشخیص استرس به منظور کنترل، مدیریت و کاهش آن ضروری و مهم است. از طرفی، نظریه‌های متعددی درباره‌ی کمردرد ناشی از استرس وجود دارد. مهم‌ترین نکته در همه‌ی این نظریه‌ها، آن است که عوامل روانی و احساسی باعث نوعی تغییر فیزیولوژیک و در نتیجه، بروز کمردرد می‌شوند. از این رو، به نظر می‌رسد بتوان از سیگنال الکترومایوگرام (Electromyogram یا EMG) عضلات کمر به عنوان نشانگری با هدف تشخیص استرس بهره برد.

روش‌ها: در این مطالعه، به تشخیص استرس با استفاده از سیگنال الکترومایوگرام عضلات صاف‌ کننده‌ی ستون مهره‌ها (Erector spinae muscles) پرداخته شد. ثبت سیگنال از عضلات صاف ‌کننده‌ی ستون مهره‌های راست و چپ 15 نفر انجام شد. پس از استخراج هفت ویژگی حوزه‌ی زمان و فرکانس، با استفاده از طبقه‌بند Support vector machine ‌(SVM) به تشخیص استرس در دو حالت دو سطحی (بدون استرس/استرس) و چهار سطحی (بدون استرس، استرس کم، استرس متوسط و استرس زیاد) پرداخته شد. همچنین، با استفاده از روش‌های انتخاب ویژگی، تلاش شد تا عملکرد روش پیشنهادی بهبود داده شود.

یافته‌ها: در حالت دو سطحی، استرس با صحت 100 درصد تشخیص داده شد. در حالت چهار سطحی نیز کارایی عضله‌ی صاف‌ کننده‌ی ستون مهره‌های راست بالاتر بود و به صحت 100 درصد دست یافت.

نتیجه‌گیری: الکترومایوگرام عضلات صاف‌ کننده‌ی ستون مهره‌ها، نشانگر خوبی برای تشخیص استرس می‌باشد. عضله‌ی صاف‌ کننده‌ی ستون مهره‌های راست، مؤثرتر از عضله‌ی سمت چپ عمل کرده است. انتخاب ویژگی‌ها نیز به کاهش حجم محاسبات و بهبود کارایی در تشخیص استرس کمک می‌کند. نتایج این مطالعه در تشخیص استرس به منظور کنترل و مدیریت آن کاربرد دارد.


واژگان کلیدی


استرس روانی؛ تشخیص؛ الکترومایوگرام؛ عضلات کمر؛ عضلات اطراف ستون مهره‌ها

تمام متن:

PDF

مراجع


Larsman P, Sandsjo L, Klipstein A, Vollenbroek-Hutten M, Christensen H. Perceived work demands, felt stress, and musculoskeletal neck/shoulder symptoms among elderly female computer users. The NEW study. Eur J Appl Physiol 2006; 96(2): 127-35.

Kjellberg A, Wadman C. The role of the affective stress response as a mediator of the effect of psychosocial risk factors on musculoskeletal complaints; Part 1: Assembly workers. Int J Ind Ergon 2007; 37(4): 367-74.

Larsman P, Thorn S, Sogaard K, Sandsjo L, Sjogaard G, Kadefors R. Work related perceived stress and muscle activity during standardized computer work among female computer users. Work 2009; 32(2): 189-99.

Davoudian Talab A, Badfar G, Nikomaram M, Azari G, Mansori A. Effect of back pain on occupational stress among white-collar workers. Journal of Health Research in community 2017; 3(2): 35-43. [In Persian].

Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sorensen F, Andersson G, et al. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon 1987; 18(3): 233-7.

Oberlinner C, Yong M, Nasterlack M, Pluto RP, Lang S. Combined effect of back pain and stress on work ability. Occup Med (Lond) 2015; 65(2): 147-53.

Kim MG, Kim KS, Ryoo JH, Yoo SW. Relationship between occupational stress and work-related musculoskeletal disorders in Korean male firefighters. Ann Occup Environ Med 2013; 25(1): 9.

Taib MF, Bahn S, Yun MH. The effect of psychosocial stress on muscle activity during computer work: Comparative study between desktop computer and mobile computing products. Work 2016; 54(3): 543-55.

Pourmohammadi S, Maleki A. An automatic approach to continuous stress assessment during driving based on fuzzy c-means clustering. Modares Journal of Electrical Engineering 12013; 3(1): 9-17.

Healey JA, Picard RW. Detecting stress during real-world driving tasks using physiological sensors. IEEE trans Intell Transp Syst 2005; 6(2): 156-66.

Aigrain J, Spodenkiewicz M, Dubuisson S, Detyniecki M, Cohen D, Chetouani M. Multimodal stress detection from multiple assessments. IEEE Trans Affect Comput 2016; 1.

SENIAM. Recommendations for sensor locations on individual muscles [Online]. [cited 2013]; Available from: http://seniam.org/sensor_location.htm

Cohen S. Perceived Stress Scale. Menlo Park, CA: Mind Garden, Inc; 1994.

Gjoreski M, Gjoreski H, Lustrek M, Gams M. Continuous stress detection using a wrist device: In laboratory and real life. Proceedings of 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2016); 2016 Sep 12-16; Heidelberg, Germany. New York, NY: ACM: p. 1185-93.

Jozef Stefan Institute, Department of Intelligent Systems. The-S-Test [Online]. [cited 2015]; Available from: URL: https://dis.ijs.si/thestest/

Wijsman JLP, Grundlehner B, Penders J, Hermens HJ. Trapezius muscle EMG as predictor of mental stress. Acm Trans Embed Comput Syst 2013; 12(4): 99.

Sarafino EP, Smith TW. Health psychology: Biopsychosocial interactions. 8th ed. Hoboken, NJ: Wiley; 2013.

Phinyomark A, Phukpattaranont P, Limsakul C. Feature reduction and selection for EMG signal classification. Expert Syst Appl 2012; 39(8): 7420-31.

Oskoei MA, Hu H. Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans Biomed Eng 2008; 55(8): 1956-65.

Schenk J, Kaiser M, Rigoll G. Selecting Features in On-Line Handwritten Whiteboard Note Recognition: SFS or SFFS? Proceedings of 10th International Conference on Document Analysis and Recognition; 2009 Jul 26-29; Barcelona, Spain. p. 1251-4.

Kwak N, Choi CH. Input feature selection by mutual information based on Parzen window. IEEE Trans Pattern Anal Mach Intell 2002; 24(12): 1667-71.

Sharma N, Gedeon T. Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput Methods Programs Biomed 2012; 108(3): 1287-301.




Creative Commons Attribution-NonCommercial 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.