آیا مصرف فرآورده‌های حاوی سویا می‌تواند بر سطح التهاب اثرگذار باشد؟ مروری بر شواهد موجود

نوع مقاله : مقاله مروری

نویسندگان

1 گروه تغذیه‌ی جامعه، دانشکده‌ی تغذیه و علوم غذایی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، مرکز تحقیقات امنیت غذایی، گروه تغذیه‌ی جامعه، دانشکده‌ی تغذیه و علوم غذایی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: التهاب در آسیب شناسی بسیاری از بیماری‌ها نقش دارد. بررسی‌های جدید به سوی اثرات مواد مغذی بر شاخص‌های التهابی سوق یافته و نقش مواد غذایی در پیش‌گیری از التهاب مورد توجه قرار گرفته است. به تازگی اثرات سویا و اجزای آن مانند ایزوفلاون‌های سویا بر افزایش بیان ژن‌های عوامل آنتی‌اکسیدانی، محافظت در برابر گونه‌های فعال اکسیژن و کاهش پروستاگلاندین‌های التهابی مورد توجه محققین قرار گرفته است. با توجه به محدود بودن مطالعات مروری در زمینه‌ی مصرف سویا و اجزای آن با سطوح فاکتورهای التهابی، هدف مطالعه‌ی حاضر مروری بر بررسی این ارتباط بود.روش‌ها: به منظور بررسی مطالعات انجام شده در زمینه‌ی ارتباط مصرف سویا و اجزای آن با سطوح عوامل التهابی از جستجو در PubMed و Scirus در محدوده‌ی سال‌های 1994 تا 2011 از کلید واژه‌های Inflammatory factors، Oxidative Stress، Soy isoflavones، Soy و Inflammatory cytokines استفاده شد. در مجموع 30 عنوان از میان مقالات بررسی گردید. مطالعات حیوانی، انسانی و آزمایشگاهی به صورت مورد شاهدی و کارآزمایی‌های بالینی در این مطالعه وارد شدند.یافته‌ها: در مطالعات آزمایشگاهی، ارتباط معنی‌داری بین ایزوفلاون‌های سویا و کاهش عوامل التهابی مشاهده شد. در اغلب مطالعات حیوانی، مصرف اجزای سویا منجر به کاهش عوامل التهابی شده بود، در حالی که در مطالعات انسانی مصرف سویا و یا اجزای آن با اثرات متناقضی همراه بود.نتیجه‌گیری: بر پایه‌ی یافته‌های حاصل از مطالعات انجام شده به نظر می‌رسد که مصرف سویا به دلیل محتوای بالای فیبر، ریزمغذی‌ها، پروتئین با کیفیت بالا، پپتیدهای بیواکتیو و فیتوکمیکال‌های موجود در آن ممکن است در دوزهای مناسب منجر به فعال‌سازی برخی آنزیم‌های عوامل آنتی‌اکسیدانی و مهار برخی از آنزیم‌های مسیرهای التهابی و در نهایت منجر به کاهش برخی از عوامل التهابی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Can Soy Products Affect on Inflammation Level? A Review on the Current Evidence

نویسندگان [English]

  • Maryam Sadat Miraghajani 1
  • Leila Azadbakht 2
1 Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Inflammation has a specific role in the pathology of several diseases. Recently the effects of soy and soy components such as isoflavones have been reported on the inflammatory markers. In this review we aimed to describe the existing evidence on the effect of soybeans and soy components on inflammatory indices. Methods: We searched Scirus and PubMed databases with keywords “soy”, “inflammatory factors”, “oxidative Stress”, “soy isoflavones”, “inflammatory cytokines”. Totally, 30 studies were extracted. Animal, human and in vitro studies with case-control and clinical trial designs related to soy or soy components and inflammatory markers were included in this review.Findings: Laboratory data have been shown that soy isoflavones have anti inflammatory effects significantly. Most animal studies suggest that soy components can reduce inflammatory levels. However, in human studies soy consumption had inconsistent effects on inflammatory factors. Conclusion: Moderate consumption of soy might decrease serum inflammatory markers levels. Meta analysis is needed for further evaluation in this regard.

کلیدواژه‌ها [English]

  • Soy
  • Isoflavones
  • Inflammatory factors
  1. Ji ZZ, Dai Z, Xu YC. A new tumor necrosis factor (TNF)-alpha regulator, lipo-polysaccharides-induced TNF-alpha factor, is associated with obesity and insulin resistance. Chin Med J (Engl) 2011; 124(2): 177-82.
  2. Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 2011; 22(2): 83-9.
  3. Schwarz V. [Inflammation as a factor of the pathogenesis of insulin resistance and type 2 diabetes]. Ter Arkh 2009; 81(10): 74-80.
  4. Li JJ, Fang CH. C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular diseases. Med Hypotheses 2004; 62(4): 499-506.
  5. Wu W, Wang M, Sun Z, Wang X, Miao J, Zheng Z. The predictive value of TNF-alpha and IL-6 and the incidence of macrovascular complications in patients with type 2 diabetes. Acta Diabetol 2010.
  6. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20): 1557-65.
  7. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 2002; 51(4): 1157-65.
  8. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52(7): 1799-805.
  9. Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 2002; 51(5): 1596-600.
  10. Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab 2011; 96(1): E146-E150.
  11. Mora C, Navarro JF. Inflammation and pathogenesis of diabetic nephropathy. Metabolism 2004; 53(2): 265-6.
  12. Choudhary N, Ahlawat RS. Interleukin-6 and C-reactive protein in pathogenesis of diabetic nephropathy: new evidence linking inflammation, glycemic control, and microalbuminuria. Iran J Kidney Dis 2008; 2(2): 72-9.
  13. Dennis RJ, Maldonado D, Rojas MX, Aschner P, Rondon M, Charry L, et al. Inadequate glucose control in type 2 diabetes is associated with impaired lung function and systemic inflammation: a cross-sectional study. BMC Pulm Med 2010; 10: 38.
  14. Cherney DZ, Scholey JW, Sochett E, Bradley TJ, Reich HN. The acute effect of clamped hyperglycemia on the urinary excretion of inflammatory cytokines/chemokines in uncomplicated type 1 diabetes: a pilot study. Diabetes Care 2011; 34(1): 177-80.
  15. Elmarakby AA, Sullivan JC. Relationship between Oxidative Stress and Inflammatory Cytokines in Diabetic Nephropathy. Cardiovasc Ther 2010.
  16. Nareika A, Maldonado A, He L, Game BA, Slate EH, Sanders JJ, et al. High glucose-boosted inflammatory responses to lipopolysaccharide are suppressed by statin. J Periodontal Res 2007; 42(1): 31-8.
  17. Azadbakht L, Atabak S, Esmaillzadeh A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care 2008; 31(4): 648-54.
  18. Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM, Jr., et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997; 96(12): 4219-25.
  19. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342(12): 836-43.
  20. Shah T, Casas JP, Cooper JA, Tzoulaki I, Sofat R, McCormack V, et al. Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts. Int J Epidemiol 2009; 38(1): 217-31.
  21. Lieberman EH, Gerhard MD, Uehata A, Walsh BW, Selwyn AP, Ganz P, et al. Estrogen improves endothelium-dependent, flow-mediated vasodilation in postmenopausal women. Ann Intern Med 1994; 121(12): 936-41.
  22. Sullivan TR, Jr., Karas RH, Aronovitz M, Faller GT, Ziar JP, Smith JJ, et al. Estrogen inhibits the response-to-injury in a mouse carotid artery model. J Clin Invest 1995; 96(5): 2482-8.
  23. Wilcox JG, Hatch IE, Gentzschein E, Stanczyk FZ, Lobo RA. Endothelin levels decrease after oral and nonoral estrogen in postmenopausal women with increased cardiovascular risk factors. Fertil Steril 1997; 67(2): 273-7.
  24. Cushman M, Legault C, Barrett-Connor E, Stefanick ML, Kessler C, Judd HL, et al. Effect of postmenopausal hormones on inflammation-sensitive proteins: the Postmenopausal Estrogen/Progestin Interventions (PEPI) Study. Circulation 1999; 100(7): 717-22.
  25. Manning PJ, Sutherland WH, Allum AR, de Jong SA, Jones SD. Effect of hormone replacement therapy on inflammation-sensitive proteins in post-menopausal women with Type 2 diabetes. Diabet Med 2002; 19(10): 847-52.
  26. Ricketts ML, Moore DD, Banz WJ, Mezei O, Shay NF. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. J Nutr Biochem 2005; 16(6): 321-30.
  27. Azadbakht L, Esmaillzadeh A. Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J Nutr 2009; 139(2): 335-9.
  28. Azadbakht L, Surkan PJ, Esmaillzadeh A, Willett WC. The Dietary Approaches to Stop Hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J Nutr 2011; 141(6): 1083-8.
  29. Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Hu FB, Willett WC. Soy consumption, markers of inflammation, and endothelial function: a cross-over study in postmenopausal women with the metabolic syndrome. Diabetes Care 2007; 30(4): 967-73.
  30. Galland L. Diet and inflammation. Nutr Clin Pract 2010; 25(6): 634-40.
  31. Pot GK, Geelen A, Majsak-Newman G, Harvey LJ, Nagengast FM, Witteman BJ, et al. Increased consumption of fatty and lean fish reduces serum C-reactive protein concentrations but not inflammation markers in feces and in colonic biopsies. J Nutr 2010; 140(2): 371-6.
  32. Bhupathiraju SN, Tucker KL. Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am J Clin Nutr 2011; 93(1): 37-46.
  33. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 2006; 84(6): 1489-97.
  34. Iwami D, Nonomura K, Shirasugi N, Niimi M. Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol 2011; 11(3): 384-9.
  35. Wann AK, Mistry J, Blain EJ, Michael-Titus AT, Knight MM. Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1beta-mediated cartilage degradation. Arthritis Res Ther 2010; 12(6): R207.
  36. Lu DY, Tsao YY, Leung YM, Su KP. Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: implications of antidepressant effects for omega-3 fatty acids. Neuropsychopharmacology 2010; 35(11): 2238-48.
  37. Hassan A, Ibrahim A, Mbodji K, Coeffier M, Ziegler F, Bounoure F, et al. An alpha-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-kappaB in rats with TNBS-induced colitis. J Nutr 2010; 140(10): 1714-21.
  38. Winnik S, Lohmann C, Richter EK, Schafer N, Song WL, Leiber F, et al. Dietary {alpha}-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation. Eur Heart J 2011.
  39. Hagi A, Nakayama M, Shinzaki W, Haji S, Ohyanagi H. Effects of the omega-6:omega-3 fatty acid ratio of fat emulsions on the fatty acid composition in cell membranes and the anti-inflammatory action. JPEN J Parenter Enteral Nutr 2010; 34(3): 263-70.
  40. Skulas-Ray AC, Kris-Etherton PM, Harris WS, Vanden Heuvel JP, Wagner PR, West SG. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr 2011; 93(2): 243-52.
  41. Rezamand P, McGuire MA. Effects of trans fatty acids on markers of inflammation in bovine mammary epithelial cells. J Dairy Sci 2011; 94(1): 316-20.
  42. de Lima-Salgado TM, Alba-Loureiro TC, do Nascimento CS, Nunes MT, Curi R. Molecular mechanisms by which saturated fatty acids modulate TNF-alpha expression in mouse macrophage lineage. Cell Biochem Biophys 2011; 59(2): 89-97.
  43. Rodrigues HG, Vinolo MA, Magdalon J, Fujiwara H, Cavalcanti DM, Farsky SH, et al. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids 2010; 45(9): 809-19.
  44. Anderson JW, Smith BM, Washnock CS. Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clin Nutr 1999; 70(3 Suppl): 464S-74S.
  45. Dia VP, Torres S, De Lumen BO, Erdman JW, Jr., De Mejia EG. Presence of lunasin in plasma of men after soy protein consumption. J Agric Food Chem 2009; 57(4): 1260-6.
  46. Nass N, Schoeps R, Ulbrich-Hofmann R, Simm A, Hohndorf L, Schmelzer C, et al. Screening for nutritive peptides that modify cholesterol 7alpha-hydroxylase expression. J Agric Food Chem 2008; 56(13): 4987-94.
  47. Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Hu FB, Willett WC. Dietary soya intake alters plasma antioxidant status and lipid peroxidation in postmenopausal women with the metabolic syndrome. Br J Nutr 2007; 98(4): 807-13.
  48. Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Padyab M, Hu FB, et al. Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women. Am J Clin Nutr 2007; 85(3): 735-41.
  49. Azadbakht L, Shakerhosseini R, Atabak S, Jamshidian M, Mehrabi Y, Esmaill-Zadeh A. Beneficiary effect of dietary soy protein on lowering plasma levels of lipid and improving kidney function in type II diabetes with nephropathy. Eur J Clin Nutr 2003; 57(10): 1292-4.
  50. Xiao CW, Wood C, Gilani GS. Nuclear receptors: potential biomarkers for assessing physiological functions of soy proteins and phytoestrogens. J AOAC Int 2006; 89(4): 1207-14.
  51. Siow RC, Mann GE. Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Aspects Med 2010; 31(6): 468-77.
  52. Ishii T, Itoh K, Ruiz E, Leake DS, Unoki H, Yamamoto M, et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 2004; 94(5): 609-16.
  53. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 2000; 275(21): 16023-9.
  54. Joy S, Siow RC, Rowlands DJ, Becker M, Wyatt AW, Aaronson PI, et al. The isoflavone Equol mediates rapid vascular relaxation: Ca2+-independent activation of endothelial nitric-oxide synthase/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells. J Biol Chem 2006; 281(37): 27335-45.
  55. Xu SZ, Zhong W, Ghavideldarestani M, Saurabh R, Lindow SW, Atkin SL. Multiple mechanisms of soy isoflavones against oxidative stress-induced endothelium injury. Free Radic Biol Med 2009; 47(2): 167-75.
  56. Nagarajan S. Mechanisms of anti-atherosclerotic functions of soy-based diets. J Nutr Biochem 2010; 21(4): 255-60.
  57. Chacko BK, Chandler RT, Mundhekar A, Khoo N, Pruitt HM, Kucik DF, et al. Revealing anti-inflammatory mechanisms of soy isoflavones by flow: modulation of leukocyte-endothelial cell interactions. Am J Physiol Heart Circ Physiol 2005; 289(2): H908-H915.
  58. Salzman AL, Preiser JC, Setchell KD, Szabo C. Isoflavone-mediated inhibition of tyrosine kinase: a novel antiinflammatory approach. J Med Food 1999; 2(3-4): 179-81.
  59. Swami S, Krishnan AV, Moreno J, Bhattacharyya RB, Peehl DM, Feldman D. Calcitriol and genistein actions to inhibit the prostaglandin pathway: potential combination therapy to treat prostate cancer. J Nutr 2007; 137(1 Suppl): 205S-10S.
  60. Ullah MF, Shamim U, Hanif S, Azmi AS, Hadi SM. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Mol Nutr Food Res 2009; 53(11): 1376-85.
  61. Foti P, Erba D, Riso P, Spadafranca A, Criscuoli F, Testolin G. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch Biochem Biophys 2005; 433(2): 421-7.
  62. Dia VP, Berhow MA, Gonzalez De ME. Bowman-Birk inhibitor and genistein among soy compounds that synergistically inhibit nitric oxide and prostaglandin E2 pathways in lipopolysaccharide-induced macrophages. J Agric Food Chem 2008; 56(24): 11707-17.
  63. Huang Y, Cao S, Nagamani M, Anderson KE, Grady JJ, Lu LJ. Decreased circulating levels of tumor necrosis factor-alpha in postmenopausal women during consumption of soy-containing isoflavones. J Clin Endocrinol Metab 2005; 90(7): 3956-62.
  64. Nasca MM, Zhou JR, Welty FK. Effect of soy nuts on adhesion molecules and markers of inflammation in hypertensive and normotensive postmenopausal women. Am J Cardiol 2008; 102(1): 84-6.
  65. Atteritano M, Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, et al. Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a two-year randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2007; 92(8): 3068-75.
  66. Colacurci N, Chiantera A, Fornaro F, de N, V, Manzella D, Arciello A, et al. Effects of soy isoflavones on endothelial function in healthy postmenopausal women. Menopause 2005; 12(3): 299-307.
  67. Hall WL, Vafeiadou K, Hallund J, Bugel S, Koebnick C, Reimann M, et al. Soy-isoflavone-enriched foods and inflammatory biomarkers of cardiovascular disease risk in postmenopausal women: interactions with genotype and equol production. Am J Clin Nutr 2005; 82(6): 1260-8.
  68. Fanti P, Asmis R, Stephenson TJ, Sawaya BP, Franke AA. Positive effect of dietary soy in ESRD patients with systemic inflammation--correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol Dial Transplant 2006; 21(8): 2239-46.
  69. Nikander E, Metsa-Heikkila M, Tiitinen A, Ylikorkala O. Evidence of a lack of effect of a phytoestrogen regimen on the levels of C-reactive protein, E-selectin, and nitrate in postmenopausal women. J Clin Endocrinol Metab 2003; 88(11): 5180-5.
  70. Jenkins DJ, Kendall CW, Connelly PW, Jackson CJ, Parker T, Faulkner D, et al. Effects of high- and low-isoflavone (phytoestrogen) soy foods on inflammatory biomarkers and proinflammatory cytokines in middle-aged men and women. Metabolism 2002; 51(7): 919-24.
  71. Gottstein N, Ewins BA, Eccleston C, Hubbard GP, Kavanagh IC, Minihane AM, et al. Effect of genistein and daidzein on platelet aggregation and monocyte and endothelial function. Br J Nutr 2003; 89(5): 607-16.
  72. Beavers KM, Serra MC, Beavers DP, Cooke MB, Willoughby DS. Soymilk supplementation does not alter plasma markers of inflammation and oxidative stress in postmenopausal women. Nutr Res 2009; 29(9): 616-22.
  73. Register TC, Cann JA, Kaplan JR, Williams JK, Adams MR, Morgan TM, et al. Effects of soy isoflavones and conjugated equine estrogens on inflammatory markers in atherosclerotic, ovariectomized monkeys. J Clin Endocrinol Metab 2005; 90(3): 1734-40.
  74. Sivakumar S, Palsamy P, Subramanian SP. Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem Biol Interact 2010; 188(1): 237-45.
  75. Ibrahim AS, El-Shishtawy MM, Pena A, Jr., Liou GI. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis 2010; 16: 2033-42.
  76. Ogborn MR, Nitschmann E, Bankovic-Calic N, Weiler HA, Aukema HM. Dietary soy protein benefit in experimental kidney disease is preserved after isoflavone depletion of diet. Exp Biol Med (Maywood ) 2010; 235(11): 1315-20.
  77. Emmerson E, Campbell L, Ashcroft GS, Hardman MJ. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Mol Cell Endocrinol 2010; 321(2): 184-93.
  78. Liu MH, Lin YS, Sheu SY, Sun JS. Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutr Neurosci 2009; 12(3): 123-34.
  79. Zemel MB, Sun X, Sobhani T, Wilson B. Effects of dairy compared with soy on oxidative and inflammatory stress in overweight and obese subjects. Am J Clin Nutr 2010; 91(1): 16-22.