پیرگوشی: از دانش کنونی تا چشم‌اندازهای آینده‌ی درمان

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری تخصصی پژوهشی، مرکز تحقیقات گوش، گلو، بینی، سر و گردن، دانشگاه علوم پزشکی ایران، تهران، ایران

2 دانشیار، گروه ژنتیک پزشکی، پژوهشگاه ملی مهندسی ژنتیک و زیست فن‌آوری، تهران، ایران

3 استاد، مرکز تحقیقات گوش، گلو، بینی، سر و گردن، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

کاهش شنوایی حسی- عصبی پیش‌رونده در طی افزایش سن، پیرگوشی نامیده می‌شود. پیرگوشی، یکی از شایع‌ترین بیماری‌های مزمن کهن‌سالی است. این بیماری، به دلیل پیشرفت آرام و شیوع بالا، اغلب ناچیز شمرده می‌شود. همراهی عوامل محیطی با ژن‌های مستعد کننده از طریق آسیب به سلول‌های ناحیه‌ی حلزون گوش، مسؤول ایجاد این بیماری هستند. این سلول‌ها، توانایی بازسازی را از دست داده‌اند. در نتیجه، پیرگوشی غیر قابل برگشت است و درمانی ندارد. پیرگوشی، به مرور بر روی ارتباطات افراد تأثیر می‌گذارد و ثمره‌ی آن وابستگی، انزوا، ناامیدی و در نهایت کاهش کیفیت زندگی فرد بیمار و اطرافیانش خواهد بود. این اختلال، بار اجتماعی- اقتصادی زیادی را بر سلامت عمومی دارد. تمرکز بر رویکردهای زیست‌پزشکی جدید از قبیل سلول و ژن‌درمانی و پزشکی بازساختی، امیدهای جدیدی را برای درمان این بیماری ایجاد کرده است. به دلیل روند رو به رشد جمعیت پیر، شیوع پیرگوشی نیز رو به افزایش است. از این رو، هم اکنون باید به فکر تصمیم‌گیری برای مواجهه با این امر بود. این تنها راه برای افزایش کیفیت زندگی جمعیت کهن‌سال آینده است که منجر به صرفه‌جویی اقتصادی و ارتقای سلامت گوش نیز می‌شود. در این مقاله، با هدف پررنگ کردن اهمیت بیماری و نشان دادن نیاز برای انجام تحقیقات منسجم بر روی مکانیسم‌های درون سلولی ایجاد بیماری، به منظورتشخیص به موقع، مداخله‌ی مؤثر و درمان بیماری، به جنبه‌های مختلف بیماری از علل ایجاد آن تا چشم‌اندازهای درمانی پرداخته می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Presbycusis: From Current Knowledge to Future Treatment Prospects

نویسندگان [English]

  • Masoumeh Falah 1
  • Massoud Houshmand 2
  • Mohammad Farhadi 3
1 PhD Student, ENT and Head and neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
2 Associate Professor, Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
3 Professor, ENT and Head and neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
چکیده [English]

Presbycusis is the progressive sensorineural hearing loss during aging and is one of the most common chronic diseases of the elderly. Due to slow progress and high prevalence, it is usually underestimated. Collaboration of environmental factor and susceptibility genes by inducing cochlear cell death is responsible for it. These cells lose the ability of regeneration, so presbycusis is irreversible and doesn’t have a treatment. Presbycusis slowly affects communication skills, so may lead to dependency, isolation, and frustration and will reduce quality of life of patients and those surrounding them. It has a great social and economic impact on public health. Focus on new biomedical approaches such as cell and gene therapy and regenerative medicine created new hope for treatment. Because of the growing elderly population, the prevalence of presbycusis will raise higher. Right now we should make a decision to deal with this growing population. It’s the only way to increase the quality of life of future elderly and also lead to economic savings and promoting ear health. Here we review the different aspect of presbycusis from risk factors to future treatment view. With the aim of highlighting the importance of disease and demonstrating the need for research on intracellular mechanisms of presbycusis in order to finding early diagnosis, effective intervention and treatment.

کلیدواژه‌ها [English]

  • Presbycusis
  • Risk Factor
  • Treatment
  • Cell death
  1. Yang CH, Schrepfer T, Schacht J. Age-related hearing impairment and the triad of acquired hearing loss. Front Cell Neurosci 2015; 9: 276.
  2. Fujimoto C, Yamasoba T. Oxidative stresses and mitochondrial dysfunction in age-related hearing loss. Oxid Med Cell Longev 2014; 2014: 582849.
  3. Lin FR, Thorpe R, Gordon-Salant S, Ferrucci L. Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci 2011; 66(5): 582-90.
  4. Xiong H, Dai M, Ou Y, Pang J, Yang H, Huang Q, et al. SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss. Exp Gerontol 2014; 51: 8-14.
  5. Wong AC, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015; 7: 58.
  6. Farhadi M, Daneshi A, Emamjomeh H, Hasanzadeh S. Cochlear implantation in Iran: a report of 190 cases. Adv Otorhinolaryngol 2000; 57: 435-8.
  7. Daneshi A, Ajalloueyan M, Ghasemi MM, Hashemi BS, Emamjome H, Farhadi M, et al. Complications in a series of 4400 paediatric cochlear implantation. Int J Pediatr Otorhinolaryngol 79(9): 1401-3.
  8. Farhadi M, Jalessi M, Salehian P, Ghavi FF, Emamjomeh H, Mirzadeh H, et al. Dexamethasone eluting cochlear implant: Histological study in animal model. Cochlear Implants Int 2013; 14(1): 45-50.
  9. Ciorba A, Bianchini C, Pelucchi S, Pastore A. The impact of hearing loss on the quality of life of elderly adults. Clin Interv Aging 2012; 7: 159-63.
  10. Chien W, Lin FR. Prevalence of hearing aid use among older adults in the United States. Arch Intern Med 2012; 172(3): 292-3.
  11. Panza F, Solfrizzi V, Logroscino G. Age-related hearing impairment-a risk factor and frailty marker for dementia and AD. Nat Rev Neurol 2015; 11(3): 166-75.
  12. Li-Korotky HS. Age-related hearing loss: quality of care for quality of life. Gerontologist 2012; 52(2): 265-71.
  13. World Health Organization. Deafness and hearing loss [Online]. [cited 2015 Mar]; Available from: URL: http://www.who.int/mediacentre/factsheets/fs300/en/
  14. Gates GA, Cooper JC, Jr., Kannel WB, Miller NJ. Hearing in the elderly: the Framingham cohort, 1983-1985. Part I. Basic audiometric test results. Ear Hear 1990; 11(4): 247-56.
  15. Cruickshanks KJ, Tweed TS, Wiley TL, Klein BE, Klein R, Chappell R, et al. The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study. Arch Otolaryngol Head Neck Surg 2003; 129(10): 1041-6.
  16. Helzner EP, Cauley JA, Pratt SR, Wisniewski SR, Zmuda JM, Talbott EO, et al. Race and sex differences in age-related hearing loss: the Health, Aging and Body Composition Study. J Am Geriatr Soc 2005; 53(12): 2119-27.
  17. Roth TN, Hanebuth D, Probst R. Prevalence of age-related hearing loss in Europe: a review. Eur Arch Otorhinolaryngol 2011; 268(8): 1101-7.
  18. Huang Q, Tang J. Age-related hearing loss or presbycusis. Eur Arch Otorhinolaryngol 2010; 267(8): 1179-91.
  19. Statistical Center of Iran. National Population and Housing Census 2011 [Online]. [cited 2013 Nov 15]; Available from: URL:
  20. https://www.amar.org.ir/Portals/0/Files/abstract/1390/n_sarshomari90_2.pdf
  21. Gates GA, Couropmitree NN, Myers RH. Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg 1999; 125(6): 654-9.
  22. Karlsson KK, Harris JR, Svartengren M. Description and primary results from an audiometric study of male twins. Ear Hear 1997; 18(2): 114-20.
  23. Bowl MR, Dawson SJ. The mouse as a model for age-related hearing loss - a mini-review. Gerontology 2015; 61(2): 149-57.
  24. Liu XZ, Yan D. Ageing and hearing loss. J Pathol 2007; 211(2): 188-97.
  25. van Laer L, van Eyken E, Fransen E, Huyghe JR, Topsakal V, Hendrickx JJ, et al. The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment. Hum Mol Genet 2008; 17(2): 159-69.
  26. Newman DL, Fisher LM, Ohmen J, Parody R, Fong CT, Frisina ST, et al. GRM7 variants associated with age-related hearing loss based on auditory perception. Hear Res 2012; 294(1-2): 125-32.
  27. van Laer L, Huyghe JR, Hannula S, van Eyken E, Stephan DA, Maki-Torkko E, et al. A genome-wide association study for age-related hearing impairment in the Saami. Eur J Hum Genet 2010; 18(6): 685-93.
  28. Falah M, Houshmand M, Akbaroghli S, Mahmodian S, Ghavami Y, Farhadi M. Profile of Iranian GJB2 mutations in young population with novel mutation. Iran J Basic Med Sci 2011; 14(3): 213-8.
  29. Falah M, Houshmand M, Mahmoudian S, Emamdjomeh H, Ghavami Y, Farhadi M. The anticipation and inheritance pattern of c.487A>G mutation in the GJB2 gene. Arch Iran Med 2012; 15(1): 49-51.
  30. Ciorba A, Hatzopoulos S, Bianchini C, Aimoni C, Skarzynski H, Skarzynski PH. Genetics of presbycusis and presbystasis. Int J Immunopathol Pharmacol 2015; 28(1): 29-35.
  31. Goodarzi M, Moosavi-Movahedi AA, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, et al. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta A Mol Biomol Spectrosc 2014; 130: 561-7.
  32. Someya S, Xu J, Kondo K, Ding D, Salvi RJ, Yamasoba T, et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci USA 2009; 106(46): 19432-7.
  33. van Eyken E, van Camp G, Fransen E, Topsakal V, Hendrickx JJ, Demeester K, et al. Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J Med Genet 2007; 44(9): 570-8.
  34. Someya S, Prolla TA. Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mech Ageing Dev 2010; 131(7-8): 480-6.
  35. Liu H, Han Y, Wang S, Wang H. Association between the mitochondrial DNA 4977 common deletion in the hair shaft and hearing loss in presbycusis. Mol Med Rep 2015; 11(2): 1127-31.
  36. Markaryan A, Nelson EG, Hinojosa R. Major arc mitochondrial DNA deletions in cytochrome c oxidase-deficient human cochlear spiral ganglion cells. Acta Otolaryngol 2010; 130(7): 780-7.
  37. Zhao XY, Sun JL, Hu YJ, Yang Y, Zhang WJ, Hu Y, et al. The effect of overexpression of PGC-1alpha on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear Res 2013; 296: 13-24.
  38. Markaryan A, Nelson EG, Hinojosa R. Detection of mitochondrial DNA deletions in the cochlea and its structural elements from archival human temporal bone tissue. Mutat Res 2008; 640(1-2): 38-45.
  39. Houshmand M, Gardner A, Hallstrom T, Muntzing K, Oldfors A, Holme E. Different tissue distribution of a mitochondrial DNA duplication and the corresponding deletion in a patient with a mild mitochondrial encephalomyopathy: deletion in muscle, duplication in blood. Neuromuscul Disord 2004; 14(3): 195-201.
  40. Markaryan A, Nelson EG, Hinojosa R. Quantification of the mitochondrial DNA common deletion in presbycusis. Laryngoscope 2009; 119(6): 1184-9.
  41. Cruickshanks KJ, Nondahl DM, Tweed TS, Wiley TL, Klein BE, Klein R, et al. Education, occupation, noise exposure history and the 10-yr cumulative incidence of hearing impairment in older adults. Hear Res 2010; 264(1-2): 3-9.
  42. Lin FR, Maas P, Chien W, Carey JP, Ferrucci L, Thorpe R. Association of skin color, race/ethnicity, and hearing loss among adults in the USA. J Assoc Res Otolaryngol 2012; 13(1): 109-17.
  43. Fransen E, Topsakal V, Hendrickx JJ, van Laer L, Huyghe JR, van Eyken E, et al. Occupational noise, smoking, and a high body mass index are risk factors for age-related hearing impairment and moderate alcohol consumption is protective: a European population-based multicenter study. J Assoc Res Otolaryngol 2008; 9(3): 264-76.
  44. Emmerich E, Richter F, Reinhold U, Linss V, Linss W. Effects of industrial noise exposure on distortion product otoacoustic emissions (DPOAEs) and hair cell loss of the cochlea--long term experiments in awake guinea pigs. Hear Res 2000; 148(1-2): 9-17.
  45. Presbycusis: new problem of Iran's major cities. Sanat-e Darman 2014: 4(41): 68. [In Persian].
  46. Seidman MD. Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 2000; 110(5 Pt 1): 727-38.
  47. Du Z, Yang Y, Hu Y, Sun Y, Zhang S, Peng W, et al. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats. Hear Res 2012; 287(1-2): 15-24.
  48. Farahani F, Imami F, Goodarzi MT. Correlation between serum aldosterone level and hearing condition of elderly patients referred to Otolaryngology services of Hamadan, Western Iran. Audiology 2009; 18(1): 45-52. [In Persian].
  49. Dowlati MA, Derakhshandeh-Peykar P, Houshmand M, Farhadi M, Shojaei A, Fallah M, et al. Novel nucleotide changes in mutational analysis of mitochondrial 12SrRNA gene in patients with nonsyndromic and aminoglycoside-induced hearing loss. Mol Biol Rep 2013; 40(3): 2689-95.
  50. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 1972; 20(4): 145-7.
  51. Seidman MD, Ahmad N, Bai U. Molecular mechanisms of age-related hearing loss. Ageing Res Rev 2002; 1(3): 331-43.
  52. Ghaffarpour M, Mahdian R, Fereidooni F, Kamalidehghan B, Moazami N, Houshmand M. The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell Int 2014; 14(1): 21.
  53. Dowlati MA, Derakhshandeh-Peykar P, Houshmand M, Farhadi M, Shojaei A, Bazzaz JT. Novel human mitochondrial tRNA phe mutation in a patient with hearing impairment: a case study. Mitochondrial DNA 2013; 24(2): 132-6.
  54. Op de Beek K, Schacht J, van Camp G. Apoptosis in acquired and genetic hearing impairment: the programmed death of the hair cell. Hear Res 2011; 281(1-2): 18-27.
  55. Furness DN. Molecular basis of hair cell loss. Cell Tissue Res 2015; 361(1): 387-99.
  56. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309(5733): 481-4.
  57. Sha SH, Chen FQ, Schacht J. Activation of cell death pathways in the inner ear of the aging CBA/J mouse. Hear Res 2009; 254(1-2): 92-9.
  58. Dong Y, Li M, Liu P, Song H, Zhao Y, Shi J. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis. Acta Otolaryngol 2014; 134(6): 601-8.
  59. Tadros SF, D'Souza M, Zhu X, Frisina RD. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13(11): 1303-21.
  60. Esterberg R, Hailey DW, Rubel EW, Raible DW. ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci 2014; 34(29): 9703-19.
  61. Armanios M, de Cabo R, Mannick J, Partridge L, van Deursen J, Villeda S. Translational strategies in aging and age-related disease. Nat Med 2015; 21(12): 1395-9.
  62. Monroe JD, Rajadinakaran G, Smith ME. Sensory hair cell death and regeneration in fishes. Front Cell Neurosci 2015; 9: 131.
  63. Kuo BR, Baldwin EM, Layman WS, Taketo MM, Zuo J. In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of beta-Catenin and Atoh1. J Neurosci 2015; 35(30): 10786-98.
  64. Zhong C, Han Y, Ma J, Zhang X, Sun M, Wang Y, et al. Viral-mediated expression of c-Myc and cyclin A2 induces cochlear progenitor cell proliferation. Neurosci Lett 2015; 591: 93-8.
  65. Kojima K, Tamura S, Nishida AT, Ito J. Generation of inner ear hair cell immunophenotypes from neurospheres obtained from fetal rat central nervous system in vitro. Acta Otolaryngol Suppl 2004; (551): 26-30.
  66. Ren H, Chen J, Wang Y, Zhang S, Zhang B. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis. Int J Clin Exp Pathol 2013; 6(2): 230-41.
  67. Gillespie LN, Zanin MP, Shepherd RK. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig. J Control Release 2015; 198: 26-34.
  68. Alam SA, Oshima T, Suzuki M, Kawase T, Takasaka T, Ikeda K. The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils. Laryngoscope 2001; 111(3): 528-34.
  69. Cunningham LL, Matsui JI, Warchol ME, Rubel EW. Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J Neurobiol 2004; 60(1):
  70. -100.
  71. Kang JW, Choi HS, Kim K, Choi JY. Dietary vitamin intake correlates with hearing thresholds in the older population: the Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 2014; 99(6): 1407-13.
  72. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010; 143(5): 802-12.
  73. Ruan Q, Ma C, Zhang R, Yu Z. Current status of auditory aging and anti-aging research. Geriatr Gerontol Int 2014; 14(1): 40-53.
  74. Pang J, Xiong H, Yang H, Ou Y, Xu Y, Huang Q, et al. Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol 2016; 76: 58-67.