مروری بر تکامل زبان و ژنتیک اختلالات تکلم

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، گروه زیست‌شناسی، دانشکده‌ی علوم، دانشگاه اصفهان، اصفهان، ایران

2 کارشناس ارشد، مرکز تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی شهرکرد و آزمایشگاه ژنتیک و تشخیص هویت، مرکز پزشکی قانونی اصفهان، اصفهان، ایران

3 دانشجوی دکتری، گروه ژنتیک، دانشکده‌ی علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

4 دانشیار، گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان و مرکز ژنتیک پزشکی ژنوم، اصفهان، ایران

چکیده

زبان به عنوان ویژگی انحصاری انسان، لازمه‌ی تکامل فرهنگ و تشکیل اجتماع انسانی به شمار می‌رود و در صدر ویژگی‌های تکامل‌ یافتگی انسان جای دارد. مقوله‌ی زبان و تکلم از منظر حوزه‌های مختلفی از جمله حوزه‌ی زیست‌شناسی قابل تأمل و تعمق است. به نحوی که زبان‌شناسی زیستی (Biolinguistics) حوزه‌ای میان رشته‌ای است که به مطالعه‌ی زیست‌شناختی و تکامل زبان می‌پردازد و می‌کوشد تا عملکردی چرخه‌ای را در ذهن بیابد که ما را قادر به ادراک اصول و مبانی زبان می‌سازد. ژنتیک زبان به عنوان زیر مجموعه‌ای از زبان‌شناسی زیستی وظیفه‌ی ردیابی مؤلفه‌های ژنتیکی را در شکل‌گیری و ادراک زبان بر عهده دارد. اگر چه تئوری‌های متنوعی در رابطه با منشأ زبان تا به امروز مطرح شده است، اما بی‌گمان نوعی تکامل ‌یافتگی ژنتیکی جهت برخورداری از تکلم را به خصوص با توجه به دستاوردهای علمی اخیر می‌توان از اصلی‌ترین ملزومات این توانمندی تلقی کرد. در طی سال‌های اخیر، محققان با شناسایی ژن‌های معیوب در طیفی از اختلالات زبانی، به وضوح نیازمندی دستگاه تکلم به صحت عملکرد این ژن‌ها را تأیید کرده‌اند. با این حال، کماکان در پاسخ به این سؤال کلیدی درمانده‌ایم که «آیا وجود و صحت عملکرد این ژن‌ها و در یک نگاه وسیع‌تر، تجهیزات و تمهیدات ژنتیکی به خصوص به لحاظ تکاملی و منشأ زبان، تنها شرط لازم جهت برخورداری از تکلم هستند و یا شرط کافی؟». در این مطالعه‌ی مروری،‌ جنبه‌هایی از تکامل زبان و ژنتیک اختلالات تکلم همراه با پیشرفت‌های چشمگیر و مطالعات جدید در این زمینه‌ مورد بحث قرار گرفته است. 

کلیدواژه‌ها


عنوان مقاله [English]

An Overview on the Evolution of Language and Genetics of Speech Disorders

نویسندگان [English]

  • Seyyed Mohammad Mousavi 1
  • Elaheh Kamali 2
  • Padideh Karimi 3
  • Mansour Salehi 4
1 Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord AND General Office of Legal Medicine, Isfahan, Iran
2 PhD Student, Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
3 PhD Student, Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
4 Associate Professor, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences AND Medical Genetics Center of Genome, Isfahan, Iran
چکیده [English]

Language, as an exclusive salient of human kind, is the requisite of development and formation of the human society; thus, it is at the topmost of human evolutionary features. Language and speech can be studied in various fields such as biology. Biolinguistics is an interdisciplinary field in which biological development of language is studied. It aims to find the functioning cycle in mind that enables humans to perceive the principles and bases of language. Language genetics, a subfield of biolinguistics, traces genetic factors in the formation and perception of language. Although a variety of theories have been introduced to explain the origins of language, considering recent studies, acquiring essential genetic abilities for speaking are undoubtedly of the most crucial necessities of this skill. Researchers have recently found defective genes in a wide spectrum of language disorders, through which they strongly confirm that speech systems rely on these genes to function properly. However, there is no report on a study which answers this question clearly: considering the origins of language and human evolution, is the proper function of genes, genetic structures, and general requirements necessary for speaking? The evolution of language and genetics of speech disorders along with the outstanding improvements and recent studies are discussed in this review article.

کلیدواژه‌ها [English]

  • Language
  • Genetics
  • Evolution
  • Speech disorders
  1. Fitch WT, Huber L, Bugnyar T. Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 2010; 65(6): 795-814.
  2. Luna D, Ringberg T, Peracchio LA. One individual, two identities: frame switching among biculturals. Journal of Consumer Research 2008; 35(2): 279-93.
  3. Paul LM. Ethnologue: languages of the world. 16th ed. Dallas, TX: SIL International; 2009.
  4. Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME. Localisation of a gene implicated in a severe speech and language disorder. Nat Genet 1998; 18(2): 168-70.
  5. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413(6855): 519-23.
  6. Fitch WT. The evolution of speech: a comparative review. Trends Cogn Sci 2000; 4(7): 258-67.
  7. Damasio AR, Geschwind N. The neural basis of language. Annual Review of Neuroscience 1984; 7: 127-47.
  8. Bogen JE, Bogen GM. Wernicke's region--Where is it? Ann N Y Acad Sci 1976; 280: 834-43.
  9. Demonet JF, Chollet F, Ramsay S, Cardebat D, Nespoulous JL, Wise R, et al. The anatomy of phonological and semantic processing in normal subjects. Brain 1992; 115(Pt 6): 1753-68.
  10. Poeppel D, Idsardi WJ, van Wassenhove V. Speech perception at the interface of neurobiology and linguistics. Philos Trans R Soc Lond B Biol Sci 2008; 363(1493): 1071-86.
  11. Robson H, Sage K, Ralph MA. Wernicke's aphasia reflects a combination of acoustic-phonological and semantic control deficits: a case-series comparison of Wernicke's aphasia, semantic dementia and semantic aphasia. Neuropsychologia 2012; 50(2): 266-75.
  12. Harpaz Y, Levkovitz Y, Lavidor M. Lexical ambiguity resolution in Wernicke's area and its right homologue. Cortex 2009; 45(9): 1097-103.
  13. Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA. Paul Broca's historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 2007; 130(Pt 5): 1432-41.
  14. Skipper JI, Goldin-Meadow S, Nusbaum HC, Small SL. Speech-associated gestures, Broca's area, and the human mirror system. Brain Lang 2007; 101(3): 260-77.
  15. Bernal B, Ardila A. The role of the arcuate fasciculus in conduction aphasia. Brain 2009; 132(Pt 9): 2309-16.
  16. Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS, et al. Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 2008; 105(46): 18035-40.
  17. Bastiaanse R, van ZR. Broca's aphasia, verbs and the mental lexicon. Brain Lang 2004; 90(1-3): 198-202.
  18. Caplan D. Why is Broca's area involved in syntax? Cortex 2006; 42(4): 469-71.
  19. Caramazza A, Zurif EB. Dissociation of algorithmic and heuristic processes in language comprehension: evidence from aphasia. Brain Lang 1976; 3(4): 572-82.
  20. Friederici AD, Meyer M, von Cramon DY. Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang 2000; 74(2): 289-300.
  21. Fitch WT. The evolution of language. Cambridge, UK: Cambridge University Press; 2010.
  22. Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009; 462(7270): 213-7.
  23. Griffin DR. Animal minds. Chicago, IL: University of Chicago Press; 1992.
  24. Hurford JR. The origins of meaning. Oxford, UK: Oxford University Press; 2007.
  25. Emery N, Clayton N, Frith Ch. Social intelligence: from brain to culture. Oxford, UK: Oxford University Press; 2008.
  26. Hurford J. The evolution of human communication and language. In: D'Ettorre P, Hughes D, editors. Sociobiology of communication: an interdisciplinary perspective. Oxford, UK: Oxford University Press; 2008. p. 249-64.
  27. Fitch WT. The biology and evolution of language: Deep homology and the evolution of innovation. In: Gazzaniga MS, editor. The cognitive neuroscience. Cambridge, MA: MIT Press; 2009. p. 873–83.
  28. Fernald RD. Casting a genetic light on the evolution of eyes. Science 2006; 313(5795): 1914-8.
  29. Toth AL, Robinson GE. Evo-devo and the evolution of social behavior. Trends Genet 2007; 23(7): 334-41.
  30. Goodson JL, Kabelik D. Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol 2009; 30(4): 429-41.
  31. Shriberg LD, Tomblin JB, McSweeny JL. Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. J Speech Lang Hear Res 1999; 42(6): 1461-81.
  32. Tomblin JB, Records NL, Buckwalter P, Zhang X, Smith E, O'Brien M. Prevalence of specific language impairment in kindergarten children. J Speech Lang Hear Res 1997; 40(6): 1245-60.
  33. National Dissemination Center for Children with Disabilities (NICHCY). Speech and language impairments [Online]. [cited 2011 Jan]; Available from: URL:
  34. http://www.parentcenterhub.org/repository/speechlanguagel/
  35. Gierut JA. Treatment efficacy: functional phonological disorders in children. J Speech Lang Hear Res 1998; 41(1): S85-100.
  36. Kirshner HS. Aphasia. In: Ramachandran VS, editor. Encyclopedia of human behavior. 2nd ed. San Diego, CA: Academic Press; 2012. p. 177-86.
  37. National Institute of Neurological Disorders and Stroke. NINDS aphasia information page [Online]. [cited 2014 Feb 14]; Available from: URL: http://www.ninds.nih.gov/disorders/aphasia/aphasia.htm
  38. National Stroke Association [Online]. [cited 2008]; Available from: URL: www.stroke.org
  39. Mizen L, Cooper SA. Learning disabilities. Medicine 2012; 40(11): 619-22.
  40. Cortiella C. The state of learning disabilities. New York, NY: National Center for Learning Disabilities; 2009.
  41. Lagae L. Learning disabilities: definitions, epidemiology, diagnosis, and intervention strategies. Pediatr Clin North Am 2008; 55(6): 1259-68, vii.
  42. Interagency Committee on Learning Disabilities. Learning disabilities: a report to the U.S. Congress. Washington, DC: Government Printing Office; 1987.
  43. Shaywitz SE. Dyslexia. N Engl J Med 1998; 338(5): 307-12.
  44. Schumacher J, Hoffmann P, Schmal C, Schulte-Korne G, Nothen MM. Genetics of dyslexia: the evolving landscape. J Med Genet 2007; 44(5): 289-97.
  45. Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009; 62(4): 494-509.
  46. Flannery KA, Liederman J, Daly L, Schultz J. Male prevalence for reading disability is found in a large sample of black and white children free from ascertainment bias. J Int Neuropsychol Soc 2000; 6(4): 433-42.
  47. Evans TM, Flowers DL, Napoliello EM, Eden GF. Sex-specific gray matter volume differences in females with developmental dyslexia. Brain Struct Funct 2014; 219(3): 1041-54.
  48. Heim S, Tschierse J, Amunts K, Wilms M, Vossel S, Willmes K, et al. Cognitive subtypes of dyslexia. Acta Neurobiol Exp (Wars ) 2008; 68(1): 73-82.
  49. Chung KK, Ho CS, Chan DW, Tsang SM, Lee SH. Cognitive profiles of Chinese adolescents with dyslexia. Dyslexia 2010; 16(1): 2-23.
  50. Taylor J, Roehrig AD, Soden HB, Connor CM, Schatschneider C. Teacher quality moderates the genetic effects on early reading. Science 2010; 328(5977): 512-4.
  51. Pennington BF, McGrath LM, Rosenberg J, Barnard H, Smith SD, Willcutt EG, et al. Gene X environment interactions in reading disability and attention-deficit/hyperactivity disorder. Dev Psychol 2009; 45(1): 77-89.
  52. Roth TL, Roth ED, Sweatt JD. Epigenetic regulation of genes in learning and memory. Essays Biochem 2010; 48(1): 263-74.
  53. Gibson CJ, Gruen JR. The human lexinome: genes of language and reading. J Commun Disord 2008; 41(5): 409-20.
  54. Poelmans G, Buitelaar JK, Pauls DL, Franke B. A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 2011; 16(4): 365-82.
  55. Joanisse MF, Seidenberg MS. Specific language impairment: a deficit in grammar or processing? Trends Cogn Sci 1998; 2(7): 240-7.
  56. Parisse Ch, Maillart Ch. Specific language impairment as systemic developmental disorders. Journal of Neurolinguistics 2009; 22(2): 109-22.
  57. Newbury DF, Monaco AP. Genetic advances in the study of speech and language disorders. Neuron 2010; 68(2): 309-20.
  58. Bartlett CW, Flax JF, Logue MW, Vieland VJ, Bassett AS, Tallal P, et al. A major susceptibility locus for specific language impairment is located on 13q21. Am J Hum Genet 2002; 71(1): 45-55.
  59. Conti-Ramsden G, Botting N. Specific Language Impairment. In: Brown K, editor. Encyclopedia of language and linguistics. 2nd ed. Oxford, UK: Elsevier; 2006. p. 629-32.
  60. Johnson CJ, Beitchman JH, Young A, Escobar M, Atkinson L, Wilson B, et al. Fourteen-year follow-up of children with and without speech/language impairments: speech/language stability and outcomes. J Speech Lang Hear Res 1999; 42(3): 744-60.
  61. Ripley K, Daines B, Barrett J. Dyspraxia: a guide for teachers and parents. London, UK: David Fulton Publishers; 1997.
  62. Shriberg LD. Childhood apraxia of speech. Genetics 2011; 25: 166-77.
  63. Shriberg LD, Aram DM, Kwiatkowski J. Developmental apraxia of speech: I. Descriptive and theoretical perspectives. J Speech Lang Hear Res 1997; 40(2): 273-85.
  64. Shriberg LD. Classification and misclassification of child speech sound disorders. Proceedings of the Annual Convention of the American Speech-Language-Hearing Association; 2002; Atlanta, GA, USA.
  65. Sices L, Taylor HG, Freebairn L, Hansen A, Lewis B. Relationship between speech-sound disorders and early literacy skills in preschool-age children: impact of comorbid language impairment. J Dev Behav Pediatr 2007; 28(6): 438-47.
  66. Felsenfeld S, McGue M, Broen PA. Familial aggregation of phonological disorders: results from a 28-year follow-up. J Speech Hear Res 1995; 38(5): 1091-107.
  67. Raitano NA, Pennington BF, Tunick RA, Boada R, Shriberg LD. Pre-literacy skills of subgroups of children with speech sound disorders. J Child Psychol Psychiatry 2004; 45(4): 821-35.
  68. Stein CM, Schick JH, Gerry TH, Shriberg LD, Millard C, Kundtz-Kluge A, et al. Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and reading. Am J Hum Genet 2004; 74(2): 283-97.
  69. Prasse JE, Kikano GE. Stuttering: an overview. Am Fam Physician 2008; 77(9): 1271-6.
  70. Maguire GA, Yeh CY, Ito BS. Overview of the Diagnosis and Treatment of Stuttering. Journal of Experimental and Clinical Medicine 2012; 4(2): 92-7.
  71. Mansson H. Childhood stuttering: Incidence and development. Journal of Fluency Disorders 2000; 25(1): 47-57.
  72. Ashley C, Yvonne T. The epidemiology of stuttering: the need for reliable estimates of prevalence and anxiety levels over the lifespan. Int J Speech Lang Pathol 2005; 7(1): 41-6.
  73. Yairi E, Ambrose NG. Early childhood stuttering for clinicians by clinicians. Austin, TX: 2005.
  74. Proctor A, Duff M, Yairi E. Early childhood stuttering: African Americans and European Americans. ASHA Leader 2002; 4(15): 102.
  75. Brkanac Z, Chapman NH, Igo RP, Jr., Matsushita MM, Nielsen K, Berninger VW, et al. Genome scan of a nonword repetition phenotype in families with dyslexia: evidence for multiple loci. Behav Genet 2008; 38(5): 462-75.
  76. Shugart YY, Mundorff J, Kilshaw J, Doheny K, Doan B, Wanyee J, et al. Results of a genome-wide linkage scan for stuttering. Am J Med Genet 2004; 124A (2): 133-5.
  77. Wittke-Thompson JK, Ambrose N, Yairi E, Roe C, Cook EH, Ober C, et al. Genetic studies of stuttering in a founder population. J Fluency Disord 2007; 32(1): 33-50.
  78. Raza MH, Riazuddin S, Drayna D. Identification of an autosomal recessive stuttering locus on chromosome 3q13.2-3q13.33. Hum Genet 2010; 128(4): 461-3.
  79. Riaz N, Steinberg S, Ahmad J, Pluzhnikov A, Riazuddin S, Cox NJ, et al. Genomewide significant linkage to stuttering on chromosome 12. Am J Hum Genet 2005; 76(4): 647-51.
  80. Suresh R, Ambrose N, Roe C, Pluzhnikov A, Wittke-Thompson JK, Ng MC, et al. New complexities in the genetics of stuttering: significant sex-specific linkage signals. Am J Hum Genet 2006; 78(4): 554-63.
  81. Kang C, Riazuddin S, Mundorff J, Krasnewich D, Friedman P, Mullikin JC, et al. Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. N Engl J Med 2010; 362(8): 677-85.
  82. Cury GK, Matte U, Artigalas O, Alegra T, Velho RV, Sperb F, et al. Mucolipidosis II and III alpha/beta in Brazil: analysis of the GNPTAB gene. Gene 2013; 524(1): 59-64.
  83. Sun T, Walsh CA. Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci 2006; 7(8): 655-62.
  84. Corballis MC. From mouth to hand: gesture, speech, and the evolution of right-handedness. Behav Brain Sci 2003; 26(2): 199-208.
  85. Treiman R, Clifton C, Meyer AS, Wurm LH. Language comprehension and production. handbook of psychology. New York, NY: John Wiley and Sons, Inc.; 2003.
  86. Boesch C. Handedness in wild chimpanzees. International Journal of Primatology 1991; 12(6): 541-58.
  87. Frayer DW, Fiore I, Lalueza-Fox C, Radovcic J, Bondioli L. Right handed Neandertals: Vindija and beyond. J Anthropol Sci 2010; 88: 113-27.
  88. Estalrrich A, Rosas A. Handedness in Neandertals from the El Sidron (Asturias, Spain): evidence from instrumental striations with ontogenetic inferences. PLoS One 2013; 8(5): e62797.
  89. Medland SE, Duffy DL, Wright MJ, Geffen GM, Hay DA, Levy F, et al. Genetic influences on handedness: data from 25,732 Australian and Dutch twin families. Neuropsychologia 2009; 47(2): 330-7.
  90. Giljov A, Karenina K, Malashichev Y. Forelimb preferences in quadrupedal marsupials and their implications for laterality evolution in mammals. BMC Evol Biol 2013; 13(1): 61.
  91. Gutwinski S, Loscher A, Mahler L, Kalbitzer J, Heinz A, Bermpohl F. Understanding left-handedness. Dtsch Arztebl Int 2011; 108(50): 849-53.
  92. Rodriguez A, Kaakinen M, Moilanen I, Taanila A, McGough JJ, Loo S, et al. Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics 2010; 125(2): e340-e348.
  93. Banich MT. The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 1998; 36(2): 128-57.
  94. Hardyck C, Petrinovich LF. Left-handedness. Psychol Bull 1977; 84(3): 385-404.
  95. Deep-Soboslay A, Hyde TM, Callicott JP, Lener MS, Verchinski BA, Apud JA, et al. Handedness, heritability, neurocognition and brain asymmetry in schizophrenia. Brain 2010; 133(10): 3113-22.
  96. El-Rakhawy M. Mixed handedness and the schizophrenic spectrum. Current Psychiatry [Egypt] 2009; 16(3): 236-42.
  97. Deuel RK, Dunlop NL. Hand preferences in the rhesus monkey. Implications for the study of cerebral dominance. Arch Neurol 1980; 37(4): 217-21.
  98. Tonnessen FE, Lokken A, Hoien T, Lundberg I. Dyslexia, left-handedness, and immune disorders. Arch Neurol 1993; 50(4): 411-6.
  99. Przybyla A, Good DC, Sainburg RL. Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers. Exp Brain Res 2012; 216(3): 419-31.
  100. Francks C, DeLisi LE, Shaw SH, Fisher SE, Richardson AJ, Stein JF, et al. Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Hum Mol Genet 2003; 12(24): 3225-30.
  101. Francks C, DeLisi LE, Fisher SE, Laval SH, Rue JE, Stein JF, et al. Confirmatory evidence for linkage of relative hand skill to 2p12-q11. Am J Hum Genet 2003; 72(2): 499-502.
  102. Francks C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, Medland SE, et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 2007; 12(12): 1129-39, 1057.
  103. Lauren J, Airaksinen MS, Saarma M, Timmusk T. A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics 2003; 81(4): 411-21.
  104. Ludwig KU, Mattheisen M, Muhleisen TW, Roeske D, Schmal C, Breuer R, et al. Supporting evidence for LRRTM1 imprinting effects in schizophrenia. Mol Psychiatry 2009; 14(8): 743-5.
  105. Sousa I, Clark TG, Holt R, Pagnamenta AT, Mulder EJ, Minderaa RB, et al. Polymorphisms in leucine-rich repeat genes are associated with autism spectrum disorder susceptibility in populations of European ancestry. Mol Autism 2010; 1(1): 7.
  106. Scerri TS, Brandler WM, Paracchini S, Morris AP, Ring SM, Richardson AJ, et al. PCSK6 is associated with handedness in individuals with dyslexia. Hum Mol Genet 2011; 20(3): 608-14.
  107. Constam DB, Robertson EJ. SPC4/PACE4 regulates a TGFbeta signaling network during axis formation. Genes Dev 2000; 14(9): 1146-55.