مقایسه‌ی نشانگرهای سطحی 14 CDو 44CD در سلول‌های بنیادی مشتق از چربی (ADSCs) و سلول‌های کندروسیت تمایز یافته طی فرایند کندروژنز

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم تشریحی، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، گروه علوم تشریحی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 استاد، گروه علوم تشریحی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 کارشناس ارشد، گروه ایمنی‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

5 کارشناس، گروه علوم تشریحی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: امروزه به صورت گسترده‌ای از سلول‌های بنیادی مشتق از چربی (ADSCs یا Adipose tissue-derived stem cells) جهت مهندسی بافت غضروف استفاده می‌شود. بیشتر مطالعاتی که تاکنون در این زمینه انجام شده است، پیرامون داربست ها، عوامل رشد و روش‌های تحریک مکانیکی بوده است و مطالعات کمی در زمینه‌ی تغییرات نشانگرهای سطحی طی کندروژنز انجام شده است. بر این اساس، هدف تحقیق حاضر بررسی تغییرات نشانگرهای سطحی 14CD و 44CD طی فرایند کندروژنز است.روش‌ها: بافت چربی زیر جلدی انسانی 3 نفر تحت تأثیر آنزیم کلاژناز تجزیه و سلول‌‌های بنیادی کشت داده شدند. سلول‌های پاساژ دوم جهت بررسی نشانگرهای سطحی 14CD و 44CD به وسیله‌ی فلوسیتومتری مورد استفاده قرار گرفتند. همچنین این سلول‌ها در داربست آلژینات و تحت تأثیر مدیوم کندروژنیک کشت داده شدند و سلول‌های تمایز یافته در روزهای 7 و 14 جهت بررسی نشانگرهای سطحی 14CD و 44CD مورد استفاده قرار گرفتند.یافته‌ها: بیان نشانگر 44CD در 8/96 درصد از ADSCs مشخص گردید؛ اما 14CD در 6/98 درصد از این سلول‌ها بیان نشد. نشانگر 44CD در سلول‌های بنیادی تمایز یافته در داربست آلژینات در روز 7 در 3/96 درصد بیان شد؛ اما در روز 14 کاهش پیدا کرد و به 8/52 درصد رسید. بیان نشانگر 14CD در این سلول‌ها در روز 7 و 14 به ترتیب 7/99 و 9/99 درصد بود.نتیجه‌گیری: نشانگر 44CD در سلول‌های بنیادی و سلول‌های تمایز یافته در روز 7 با درصد بالا بیان می‌شود، اما در روز 14 کاهش پیدا می‌کند. نشانگر 14CD در سلول‌های بنیادی بیان نمی‌شود، اما در سلول‌های تمایز یافته، با درصد بالا بیان می‌شود. بنابراین پیشنهاد می‌شود با توجه به تغییرات نشانگرهای پیش‌گفته طی کندروژنز، می‌توان از این نشانگرها جهت تشخیص کندروژنز و مقایسه‌ی سلول‌های تمایز یافته با کندروسیت‌های طبیعی استفاده کرد. 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of CD44 and CD14 Surface Markers in Adipose-Derived Stem Cells and Differentiated Chondrocytes during Chondrogenesis

نویسندگان [English]

  • Ronak Zarei 1
  • Batoul Hashemibeni 2
  • Ebrahim Esfandiary 3
  • Ali Valiani 2
  • Fariborz Kianpuor 4
  • Maryam Aliakbari 5
1 MSc Student, Department of Anatomical Sciences, School of Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5 Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Nowadays, adipose-derived stem cells (ADSCs) are widely used for cartilage tissue engineering. However, most studies are in the field of scaffolds, growth factors and mechanical stimulation methods. But, few studies have been conducted regarding changes in surface markers during chondrogenesis. Accordingly, this study aimed to assess the changes in surface markers CD14 and CD44 during chondrogenesis.Methods: Human subcutaneous adipose tissue were isolated and cultured from 3 persons influenced by collagenase enzyme and stem cells. The cells of second passage were used for flow cytometry analysis of CD14 and CD44 surface markers. Second passage cells were cultured in alginate scaffolds under the influence of chondrogenic medium. Differentiated cells at the days 7 and 14 were used to evaluate CD14 and CD44 surface markers.Findings: The mean expression of CD44 in ADSCs was 96.8% but CD14 did not expressed in 98.6% of the cells. In stem cells, the mean expression of CD44 differentiated in alginate scaffolds on the day 7 was 96.3%; but on the day 14, it fell to 52.8%. The mean expression of CD14 at the days 7 and 14 was 99.7% and 99.9%, respectively.Conclusion: Our investigation revealed that the stem cells and differentiated cells at the day 7 express CD44 at high level, but at day 14, the expression of CD44 in differentiated cells is reduced. CD14 is not expressed on stem cells but in differentiated cells is expressed in high level. Due to these changes in surface markers during chondrogenesis, using them can be offered to determine chondrogenesis and to compare differentiated and normal chondrocytes.

کلیدواژه‌ها [English]

  • Adipose-derived stem cells
  • Chondrogenesis
  • Tissue engineering
  • CD44
  • CD14
  1. Hardingham T, Tew S, Murdoch A. Tissue engineering: chondrocytes and cartilage. Arthritis Res 2002; 4(Suppl 3): S63-S68.
  2. Mansour JM, Mow VC. The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg Am 1976; 58(4): 509-16.
  3. Campbell DD, Pei M. Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 2012; 1(4): 1107-20.
  4. Josh F, Kobe K, Tobita M, Tanaka R, Suzuki K, Ono K, et al. Accelerated and safe proliferation of human adipose-derived stem cells in medium supplemented with human serum. J Nippon Med Sch 2012; 79(6): 444-52.
  5. Al-Nbaheen M, Vishnubalaji R, Ali D, Bouslimi A, Al-Jassir F, Megges M, et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 2013; 9(1): 32-43.
  6. Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng 2003; 9(Suppl 1): S45-S64.
  7. Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B, et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 2003; 5(7): 640-6.
  8. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44(8): 1928-42.
  9. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol 2008; 40(5): 815-20.
  10. Crop M, Baan C, Weimar W, Hoogduijn M. Potential of mesenchymal stem cells as immune therapy in solid-organ transplantation. Transpl Int 2009; 22(4): 365-76.
  11. Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 2008; 47(2): 126-31.
  12. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 2007; 25(11): 2896-902.
  13. Djouad F, Bony C, Haupl T, Uze G, Lahlou N, Louis-Plence P, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 2005; 7(6): R1304-R1315.
  14. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5(5): 362-9.
  15. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005; 54(3): 132-41.
  16. Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  17. Alipour R, Sadeghi F, Hashemi-Beni B, Zarkesh-Esfahani SH, Heydari F, Mousavi SB, et al. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells. Int J Prev Med 2010; 1(3): 164-71.
  18. da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119(Pt 11): 2204-13.
  19. Lin TM, Tsai JL, Lin SD, Lai CS, Chang CC. Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev 2005; 14(1): 92-102.
  20. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174(3): 101-9.
  21. Lee HJ, Choi BH, Min BH, Park SR. Changes in surface markers of human mesenchymal stem cells during the chondrogenic differentiation and dedifferentiation processes in vitro. Arthritis Rheum 2009; 60(8): 2325-32.
  22. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, et al. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 2003; 21(3): 451-7.
  23. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 2004; 320(3): 914-9.
  24. Lee HJ, Choi BH, Min BH, Son YS, Park SR. Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif Organs 2006; 30(9): 707-15.
  25. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem 2006; 97(1): 33-44.
  26. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002; 99(7): 4397-402.
  27. Ylostalo J, Smith JR, Pochampally RR, Matz R, Sekiya I, Larson BL, et al. Use of differentiating adult stem cells (marrow stromal cells) to identify new downstream target genes for transcription factors. Stem Cells 2006; 24(3): 642-52.
  28. Diaz-Romero J, Gaillard JP, Grogan SP, Nesic D, Trub T, Mainil-Varlet P. Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol 2005; 202(3): 731-42.
  29. Tapp H, Hanley EN, Jr., Patt JC, Gruber HE. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood ) 2009; 234(1): 1-9.
  30. Pilz GA, Braun J, Ulrich C, Felka T, Warstat K, Ruh M, et al. Human mesenchymal stromal cells express CD14 cross-reactive epitopes. Cytometry A 2011; 79(8): 635-45.
  31. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 2007; 16(1): 91-104.
  32. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9(1): 204.
  33. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24(2): 376-85.
  34. Knudson CB, Knudson W. Hyaluronan and CD44: modulators of chondrocyte metabolism. Clin Orthop Relat Res 2004; (427 Suppl): S152-S162.
  35. Hashemibeni B, Razavi Sh, Esfandiary E, Salehi M, Karbasi S, Mardani M, et al. The effect of BMP-6 growth factor on differentiation of adipose-derived stem cells into chondrocyte in pellet culture system. J Isfahan Med Sch 2009; 27(100): 618-31. [In Persian].
  36. Jo CH, Ahn HJ, Kim HJ, Seong SC, Lee MC. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy 2007; 9(4): 316-27.
  37. Diaz-Romero J, Nesic D, Grogan SP, Heini P, Mainil-Varlet P. Immunophenotypic changes of human articular chondrocytes during monolayer culture reflect bona fide dedifferentiation rather than amplification of progenitor cells. J Cell Physiol 2008; 214(1): 75-83.
  38. Ziegler-Heitbrock HW, Ulevitch RJ. CD14: cell surface receptor and differentiation marker. Immunol Today 1993; 14(3): 121-5.