بروسلا: بیماری‌زایی، واکنش سیستم ایمنی و واکسن

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه میکروب‌شناسی و ایمنی‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کاشان، کاشان، ایران

2 دانشیار، مرکز تحقیقات بیولوژی مولکولی، دانشگاه علوم پزشکی بقیه‌اله (عج)، تهران، ایران

چکیده

باکتری‌های جنس بروسلا، پاتوژن‌هایی داخل سلولی هستند که می‌توانند در داخل ماکروفاژهای بدن میزبان خود، تکثیر و به بقای خود ادامه دهند که حاصل آن مشکلات بسیاری برای میزبان به وجود خواهد آورد. نتایج مطالعات اخیر پیشرفت‌هایی در زمینه‌ی چگونگی بقا و تکثیر داخل سلولی این باکتری را نشان می‌دهد. در این مقاله، آخرین یافته‌ها در این زمینه مورد مرور و بررسی قرار می‌گیرد. همچنین واکنش ایمنی بدن میزبان به این پاتوژن و استراتژی‌های جدید به کار رفته به منظور ساخت واکسن علیه این باکتری، بررسی می‌شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Brucella: Pathogenesis, Immune System Response and Vaccine

نویسندگان [English]

  • Amir Ghasemi 1
  • Reza Ranjbar 2
1 Assistant Professor, Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
2 Associate Professor, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
چکیده [English]

Bacteria of the genus Brucella are intracellular pathogens capable of surviving and replicating within macrophages of mammalian hosts and are resistance to killing in professional phagocytic cells which control survival and chronic infection. Recent advances have shed light on virulence factors and host functions involved at various stages of the Brucella intracellular life cycle. This review focuses on how this pathogen uses multiple strategies to circumvent macrophage defense mechanisms and generate an organelle permissive for replication. In addition, we discuss about host immune responses to Brucella and new strategies used to produce an efficient vaccine against Brucella infection.

کلیدواژه‌ها [English]

  • Brucella
  • Vaccine
  • Pathogenesis
  • Macrophage
  1. Van der Henst C, de BM, Zorreguieta A, Letesson JJ, De B, X. The Brucella pathogens are polarized bacteria. Microbes Infect 2013; 15(14-15): 998-1004.
  2. Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med 2005; 352(22): 2325-36.
  3. Olsen SC. Recent developments in livestock and wildlife brucellosis vaccination. Rev Sci Tech 2013; 32(1): 207-17.
  4. Avila-Calderon ED, Lopez-Merino A, Sriranganathan N, Boyle SM, Contreras-Rodriguez A. A history of the development of Brucella vaccines. Biomed Res Int 2013; 2013: 743509.
  5. Seleem MN, Boyle SM, Sriranganathan N. Brucella: a pathogen without classic virulence genes. Vet Microbiol 2008; 129(1-2): 1-14.
  6. Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 2003; 16(1): 65-78.
  7. Corbel MJ. Brucellosis: an overview. Emerg Infect Dis 1997; 3(2): 213-21.
  8. Robinson-Dunn B. The microbiology laboratory's role in response to bioterrorism. Arch Pathol Lab Med 2002; 126(3): 291-4.
  9. Gorvel JP, Moreno E. Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol 2002; 90(1-4): 281-97.
  10. Naroeni A, Porte F. Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect Immun 2002; 70(3): 1640-4.
  11. Watarai M, Makino S, Fujii Y, Okamoto K, Shirahata T. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell Microbiol 2002; 4(6): 341-55.
  12. Fontes P, Alvarez-Martinez MT, Gross A, Carnaud C, Kohler S, Liautard JP. Absence of evidence for the participation of the macrophage cellular prion protein in infection with Brucella suis. Infect Immun 2005; 73(10): 6229-36.
  13. Sadeghifard N, Aslani mm, Ghasemi A. Comparison of different laboratory methods for diagnosis of Helicobacter pylori. Journal of Biological Sciences 2006; 6(6): 1146-9.
  14. Kim S, Watarai M, Makino S, Shirahata T. Membrane sorting during swimming internalization of Brucella is required for phagosome trafficking decisions. Microb Pathog 2002; 33(5): 225-37.
  15. Shirazi MH, Sadeghifard N, Ranjbar R, Daneshyar E, Ghasemi A. Incidence of asymptomatic bacteriuria during pregnancy. Pak J Biol Sci 2006; 9(1): 151-4.
  16. Chaves-Olarte E, Guzman-Verri C, Meresse S, Desjardins M, Pizarro-Cerda J, Badilla J, et al. Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell Microbiol 2002; 4(10): 663-76.
  17. Celli J, de CC, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003; 198(4): 545-56.
  18. Porte F, Naroeni A, Ouahrani-Bettache S, Liautard JP. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun 2003; 71(3): 1481-90.
  19. Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, et al. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 2005; 6(6): 618-25.
  20. Bohin JP. Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 2000; 186(1): 11-9.
  21. Bhagwat AA, Mithofer A, Pfeffer PE, Kraus C, Spickers N, Hotchkiss A, et al. Further studies of the role of cyclic beta-glucans in symbiosis. An NdvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1-->3)-beta-glucosyl. Plant Physiol 1999; 119(3): 1057-64.
  22. Briones G, Inon d, I, Roset M, Vigliocco A, Paulo PS, Ugalde RA. Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun 2001; 69(7): 4528-35.
  23. Dermine JF, Duclos S, Garin J, St-Louis F, Rea S, Parton RG, et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 2001; 276(21): 18507-12.
  24. Haag AF, Myka KK, Arnold MF, Caro-Hernandez P, Ferguson GP. Importance of Lipopolysaccharide and Cyclic beta-1,2-Glucans in Brucella-Mammalian Infections. Int J Microbiol 2010; 2010: 124509.
  25. Pizarro-Cerda J, Meresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goni I, et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 1998; 66(12): 5711-24.
  26. Porte F, Liautard JP, Kohler S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 1999; 67(8): 4041-7.
  27. Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci U S A 2002; 99(3): 1544-9.
  28. Sieira R, Comerci DJ, Sanchez DO, Ugalde RA. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 2000; 182(17): 4849-55.
  29. Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP, Ugalde RA. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol 2001; 3(3): 159-68.
  30. Celli J. Surviving inside a macrophage: the many ways of Brucella. Res Microbiol 2006; 157(2): 93-8.
  31. Ghasemi A, Salari MH, Zarnani AH, Pourmand MR, Ahmadi H, Shirazi MH, et al. Immunogenicity assessment of Brucella mellitensis HSP and TF proteins by immunized rabbit serum. Iran J Allergy Asthma Immunol 2013; 12(2): 192-4.
  32. Baldwin CL, Winter AJ. Macrophages and Brucella. Immunol Ser 1994; 60: 363-80.
  33. Lin J, Ficht TA. Protein synthesis in Brucella abortus induced during macrophage infection. Infect Immun 1995; 63(4): 1409-14.
  34. Kohler S, Teyssier J, Cloeckaert A, Rouot B, Liautard JP. Participation of the molecular chaperone DnaK in intracellular growth of Brucella suis within U937-derived phagocytes. Mol Microbiol 1996; 20(4): 701-12.
  35. Edmonds M, Booth N, Hagius S, Walker J, Enright F, Roop RM, et al. Attenuation and immunogenicity of a Brucella abortus htrA cycL double mutant in cattle. Vet Microbiol 2000; 76(1): 81-90.
  36. Muffler A, Fischer D, Hengge-Aronis R. The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 1996; 10(9): 1143-51.
  37. Robertson GT, Roop RM, Jr. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 1999; 34(4): 690-700.
  38. Ghasemi A, Salari MH, Pourmand MR, Zarnani AH, Ahmadi H, Shirazi MH, et al. Optimization and efficient purification in production of Brucella melitensis recombinant HSP A and TF proteins with low endotoxin contents. Jundishapur J Microbiol 2013; 6(7): e6875.
  39. Corbeil LB, Blau K, Inzana TJ, Nielsen KH, Jacobson RH, Corbeil RR, et al. Killing of Brucella abortus by bovine serum. Infect Immun 1988; 56(12): 3251-61.
  40. Hoffmann EM, Houle JJ. Failure of Brucella abortus lipopolysaccharide (LPS) to activate the alternative pathway of complement. Vet Immunol Immunopathol 1983; 5(1): 65-76.
  41. Fernandez-Prada CM, Nikolich M, Vemulapalli R, Sriranganathan N, Boyle SM, Schurig GG, et al. Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect Immun 2001; 69(7): 4407-16.
  42. Young EJ, Borchert M, Kretzer FL, Musher DM. Phagocytosis and killing of Brucella by human polymorphonuclear leukocytes. J Infect Dis 1985; 151(4): 682-90.
  43. Riley LK, Robertson DC. Ingestion and intracellular survival of Brucella abortus in human and bovine polymorphonuclear leukocytes. Infect Immun 1984; 46(1): 224-30.
  44. Salmeron I, Rodriguez-Zapata M, Salmeron O, Manzano L, Vaquer S, Alvarez-Mon M. Impaired activity of natural killer cells in patients with acute brucellosis. Clin Infect Dis 1992; 15(5): 764-70.
  45. Fernandes DM, Benson R, Baldwin CL. Lack of a role for natural killer cells in early control of Brucella abortus 2308 infections in mice. Infect Immun 1995; 63(10): 4029-33.
  46. Gay B, Sanchez-Teff S, Caravano R. Ultrastructural localization of NADPH-oxidase activity in murine peritoneal macrophages during phagocytosis of Brucella. Correlation with the production of superoxide anions. Virchows Arch B Cell Pathol Incl Mol Pathol 1984; 45(2): 147-55.
  47. Jiang X, Baldwin CL. Iron augments macrophage-mediated killing of Brucella abortus alone and in conjunction with interferon-gamma. Cell Immunol 1993; 148(2): 397-407.
  48. Dawidowicz K, Allanore Y, Guedj M, Pierlot C, Bombardieri S, Balsa A, et al. The interferon regulatory factor 5 gene confers susceptibility to rheumatoid arthritis and influences its erosive phenotype. Ann Rheum Dis 2011; 70(1): 117-21.
  49. Araya LN, Elzer PH, Rowe GE, Enright FM, Winter AJ. Temporal development of protective cell-mediated and humoral immunity in BALB/c mice infected with Brucella abortus. J Immunol 1989; 143(10): 3330-7.
  50. Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL. Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 2001; 103(4): 511-8.
  51. Oliveira SC, Splitter GA. CD8+ type 1 CD44hi CD45 RBlo T lymphocytes control intracellular Brucella abortus infection as demonstrated in major histocompatibility complex class I- and class II-deficient mice. Eur J Immunol 1995; 25(9): 2551-7.
  52. Ottones F, Liautard J, Gross A, Rabenoelina F, Liautard JP, Favero J. Activation of human Vgamma9Vdelta2 T cells by a Brucella suis non-peptidic fraction impairs bacterial intracellular multiplication in monocytic infected cells. Immunology 2000; 100(2): 252-8.
  53. Ottones F, Dornand J, Naroeni A, Liautard JP, Favero J. V gamma 9V delta 2 T cells impair intracellular multiplication of Brucella suis in autologous monocytes through soluble factor release and contact-dependent cytotoxic effect. J Immunol 2000; 165(12): 7133-9.
  54. Montaraz JA, Winter AJ, Hunter DM, Sowa BA, Wu AM, Adams LG. Protection against Brucella abortus in mice with O-polysaccharide-specific monoclonal antibodies. Infect Immun 1986; 51(3): 961-3.
  55. Phillips M, Deyoe BL, Canning PC. Protection of mice against Brucella abortus infection by inoculation with monoclonal antibodies recognizing Brucella O-antigen. Am J Vet Res 1989; 50(12): 2158-61.
  56. Elzer PH, Jacobson RH, Nielsen KH, Douglas JT, Winter AJ. BALB/c mice infected with Brucella abortus express protracted polyclonal responses of both IgG2a and IgG3 isotypes. Immunol Lett 1994; 42(3): 145-50.
  57. Schurig GG, Roop RM, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol 1991; 28(2): 171-88.
  58. Hoffmann EM, Houle JJ. Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. Crit Rev Microbiol 1995; 21(3): 153-63.
  59. Zhan Y, Cheers C. Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect Immun 1995; 63(4): 1387-90.
  60. Zhan Y, Liu Z, Cheers C. Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms. Infect Immun 1996; 64(7): 2782-6.
  61. Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J Immunol 1996; 156(8): 2885-93.
  62. Zhan Y, Kelso A, Cheers C. Cytokine production in the murine response to brucella infection or immunization with antigenic extracts. Immunology 1993; 80(3): 458-64.
  63. Clapp B, Skyberg JA, Yang X, Thornburg T, Walters N, Pascual DW. Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun 2011; 79(10): 4165-74.
  64. Doyle AG, Halliday WJ, Barnett CJ, Dunn TL, Hume DA. Effect of recombinant human macrophage colony-stimulating factor 1 on immunopathology of experimental brucellosis in mice. Infect Immun 1992; 60(4): 1465-72.
  65. Sangari FJ, Garcia-Lobo JM, Aguero J. The Brucella abortus vaccine strain B19 carries a deletion in the erythritol catabolic genes. FEMS Microbiol Lett 1994; 121(3): 337-42.
  66. Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 2014; 5: 213.
  67. Yang X, Skyberg J, Cao L, Clapp B, Thornburg T, Pascual D. Progress in Brucella vaccine development. Front Biol 2013; 8(1): 60-77.
  68. Ashford DA, di PJ, Lingappa J, Woods C, Noll H, Neville B, et al. Adverse events in humans associated with accidental exposure to the livestock brucellosis vaccine RB51. Vaccine 2004; 22(25-26): 3435-9.
  69. el Idrissi AH, Benkirane A, el MM, Bouslikhane M, Berrada J, Zerouali A. Comparison of the efficacy of Brucella abortus strain RB51 and Brucella melitensis Rev. 1 live vaccines against experimental infection with Brucella melitensis in pregnant ewes. Rev Sci Tech 2001; 20(3): 741-7.
  70. Ghasemi A, Salari MH, Zarnani AH, Pourmand MR, Ahmadi H, Mirshafiey A, et al. Immune reactivity of Brucella melitensis-vaccinated rabbit serum with recombinant Omp31 and DnaK proteins. Iran J Microbiol 2013; 5(1): 19-23.
  71. He Y. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front Cell Infect Microbiol 2012; 2: 2.
  72. Wang Z, Niu J, Wang S, Lv Y, Wu Q. In vivo differences in the virulence, pathogenicity, and induced protective immunity of wboA mutants from genetically different parent Brucella spp. Clin Vaccine Immunol 2013; 20(2): 174-80.
  73. Todd TE, Tibi O, Lin Y, Sayers S, Bronner DN, Xiang Z, et al. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates. BMC Bioinformatics 2013; 14(Suppl 6): S3.
  74. Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci 2014; 17(3): 172-80.
  75. Cannella AP, Tsolis RM, Liang L, Felgner PL, Saito M, Sette A, et al. Antigen-specific acquired immunity in human brucellosis: implications for diagnosis, prognosis, and vaccine development. Front Cell Infect Microbiol 2012; 2: 1.
  76. Jain S, Afley P, Kumar S. Immunological responses to recombinant cysteine synthase A of Brucella abortus in BALB/c mice. World J Microbiol Biotechnol 2013; 29(5): 907-13.
  77. Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, Bowden R, et al. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infect Immun 2005; 73(10): 6537-46.
  78. Wang Y, Chen Z, Qiu Y, Ke Y, Xu J, Yuan X, et al. Identification of Brucella abortus virulence proteins that modulate the host immune response. Bioengineered 2012; 3(5): 303-5.
  79. Ding F, Lee KJ, Vahedi-Faridi A, Huang T, Xu XH. Design and probing of efflux functions of EGFP fused ABC membrane transporters in live cells using fluorescence spectroscopy. Anal Bioanal Chem 2011; 400(1): 223-35.
  80. Yang Y, Yin J, Guo D, Lang X, Wang X. Immunization of mice with recombinant S-adenosyl-L-homocysteine hydrolase protein confers protection against Brucella melitensis infection. FEMS Immunol Med Microbiol 2011; 61(2): 159-67.
  81. Kovach ME, Elzer PH, Robertson GT, Chirhart-Gilleland RL, Christensen MA, Peterson KM, et al. Cloning and nucleotide sequence analysis of a Brucella abortus gene encoding an 18 kDa immunoreactive protein. Microb Pathog 1997; 22(4): 241-6.
  82. Bowden RA, Cloeckaert A, Zygmunt MS, Dubray G. Evaluation of immunogenicity and protective activity in BALB/c mice of the 25-kDa major outer-membrane protein of Brucella melitensis (Omp25) expressed in Escherichia coli. J Med Microbiol 1998; 47(1): 39-48.
  83. Lindler LE, Hadfield TL, Tall BD, Snellings NJ, Rubin FA, Van De Verg LL, et al. Cloning of a Brucella melitensis group 3 antigen gene encoding Omp28, a protein recognized by the humoral immune response during human brucellosis. Infect Immun 1996; 64(7): 2490-9.
  84. Kittelberger R, Hilbink F, Hansen MF, Ross GP, de Lisle GW, Cloeckaert A, et al. Identification and characterization of immunodominant antigens during the course of infection with Brucella ovis. J Vet Diagn Invest 1995; 7(2): 210-8.
  85. Limet JN, Cloeckaert A, Bezard G, Van BJ, Dubray G. Antibody response to the 89-kDa outer membrane protein of Brucella in bovine brucellosis. J Med Microbiol 1993; 39(6): 403-7.
  86. Vizcaino N, Cloeckaert A, Dubray G, Zygmunt MS. Cloning, nucleotide sequence, and expression of the gene coding for a ribosome releasing factor-homologous protein of Brucella melitensis. Infect Immun 1996; 64(11): 4834-7.
  87. Roop RM, Fletcher TW, Sriranganathan NM, Boyle SM, Schurig GG. Identification of an immunoreactive Brucella abortus HtrA stress response protein homolog. Infect Immun 1994; 62(3): 1000-7.
  88. Baldi PC, Wanke MM, Loza ME, Monachesi N, Fossati CA. Diagnosis of canine brucellosis by detection of serum antibodies against an 18 kDa cytoplasmic protein of Brucella spp. Vet Microbiol 1997; 57(2-3): 273-81.
  89. Bricker BJ, Tabatabai LB, Deyoe BL, Mayfield JE. Conservation of antigenicity in a 31-kDa Brucella protein. Vet Microbiol 1988; 18(3-4): 313-25.
  90. Teixeira-Gomes AP, Cloeckaert A, Bezard G, Bowden RA, Dubray G, Zygmunt MS. Identification and characterization of Brucella ovis immunogenic proteins using two-dimensional electrophoresis and immunoblotting. Electrophoresis 1997; 18(8): 1491-7.
  91. Rossetti OL, Arese AI, Boschiroli ML, Cravero SL. Cloning of Brucella abortus gene and characterization of expressed 26-kilodalton periplasmic protein: potential use for diagnosis. J Clin Microbiol 1996; 34(1): 165-9.
  92. Hemmen F, Weynants V, Scarcez T, Letesson JJ, Saman E. Cloning and sequence analysis of a newly identified Brucella abortus gene and serological evaluation of the 17-kilodalton antigen that it encodes. Clin Diagn Lab Immunol 1995; 2(3): 263-7.
  93. Cespedes S, Andrews E, Folch H, Onate A. Identification and partial characterisation of a new protective antigen of Brucella abortus. J Med Microbiol 2000; 49(2): 165-70.
  94. Zygmunt MS, Gilbert FB, Dubray G. Purification, characterization, and seroactivity of a 20-kilodalton Brucella protein antigen. J Clin Microbiol 1992; 30(10): 2662-7.
  95. Al-Mariri A. Protection of BALB/c mice against Brucella melitensis 16 M infection induced by vaccination with live Escherchia coli expression Brucella P39 protein. Vaccine 2010; 28(7): 1766-70.
  96. Denoel PA, Vo TK, Weynants VE, Tibor A, Gilson D, Zygmunt MS, et al. Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB. J Med Microbiol 1997; 46(9): 801-6.
  97. Oliveira SC, Splitter GA. Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine 1996; 14(10): 959-62.
  98. Vemulapalli R, Duncan AJ, Boyle SM, Sriranganathan N, Toth TE, Schurig GG. Cloning and sequencing of yajC and secD homologs of Brucella abortus and demonstration of immune responses to YajC in mice vaccinated with B. abortus RB51. Infect Immun 1998; 66(12): 5684-91.
  99. Chirhart-Gilleland RL, Kovach ME, Elzer PH, Jennings SR, Roop RM. Identification and characterization of a 14-kilodalton Brucella abortus protein reactive with antibodies from naturally and experimentally infected hosts and T lymphocytes from experimentally infected BALB/c mice. Infect Immun 1998; 66(8): 4000-3.
  100. Stevens MG, Tabatabai LB, Olsen SC, Cheville NF. Immune responses to superoxide dismutase and synthetic peptides of superoxide dismutase in cattle vaccinated with Brucella abortus strain 19 or RB51. Vet Microbiol 1994; 41(4): 383-9.
  101. Brooks-Worrell BM, Splitter GA. Antigens of Brucella abortus S19 immunodominant for bovine lymphocytes as identified by one- and two-dimensional cellular immunoblotting. Infect Immun 1992; 60(6): 2459-64.
  102. Rosas G, Fragoso G, Ainciart N, Esquivel-Guadarrama F, Santana A, Bobes RJ, et al. Brucella spp. lumazine synthase: a novel adjuvant and antigen delivery system to effectively induce oral immunity. Microbes Infect 2006; 8(5): 1277-86.
  103. Sciutto E, Toledo A, Cruz C, Rosas G, Meneses G, Laplagne D, et al. Brucella spp. lumazine synthase: a novel antigen delivery system. Vaccine 2005; 23(21): 2784-90.
  104. Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun 2005; 73(11): 7297-303.
  105. Delpino MV, Estein SM, Fossati CA, Baldi PC, Cassataro J. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine 2007; 25(37-38): 6721-9.
  106. Yang Y, Wang L, Yin J, Wang X, Cheng S, Lang X, et al. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine. Mol Immunol 2011; 49(1-2): 175-84.
  107. Ghasemi A, Zarnani AH, Ghoodjani A, Rezania S, Salari MH, Jeddi-Tehrani M. Identification of a new immunogenic candidate conferring protection against Brucella melitensis infection in Mice. Mol Immunol 2014; 62(1): 142-9.
  108. Jain S, Afley P, Dohre SK, Saxena N, Kumar S. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine 2014; 32(35): 4537-42.
  109. Clausse M, Diaz AG, Ghersi G, Zylberman V, Cassataro J, Giambartolomei GH, et al. The vaccine candidate BLSOmp31 protects mice against Brucella canis infection. Vaccine 2013; 31(51): 6129-35.
  110. Li X, Xu J, Xie Y, Qiu Y, Fu S, Yuan X, et al. Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice. Vet Microbiol 2012; 161(1-2): 137-44.
  111. Fu S, Xu J, Li X, Xie Y, Qiu Y, Du X, et al. Immunization of mice with recombinant protein CobB or AsnC confers protection against Brucella abortus infection. PLoS One 2012; 7(2): e29552.
  112. Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH Zarnani AH. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. Vaccine 2014. [Epub ahead of print].