بهبود ویژگی‌های ساختار فوق میکروسکوپی میلین، بعد از پیوند سلول‌های بنیادی مشتق از بافت چربی انسان در موش صحرایی مدل بیماری Multiple sclerosis (MS)

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 استادیار، گروه علوم تشریحی و بیولوژی ملکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه علوم تشریحی و بیولوژی ملکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: بیماری Multiple sclerosis (MS) از انواع بیماری‌های مزمن Neurodegenerative در سیستم عصبی مرکزی می‌باشد که به طور معمول با ناتوانی عصبی در بالغین جوان همراه است. در این مطالعه، تأثیر پیوند سلول‌های بنیادی مشتق از بافت چربی انسان در بافت عصبی دمیلینه شده توسط لیزولسیتین و توانایی این سلول‌ها در پیشبرد فرایند بازسازی میلین، مورد بررسی قرار گرفت.روش‌ها: 40 سر موش صحرایی به صورت تصادفی در چهار گروه شامل گروه شاهد، لیزولسیتین، لیزولسیتین و محیط کشت (گروه حامل) و گروه لیزولسیتین و پیوند سلول‌های بنیادی قرار داده شدند و بعد از لامینکتومی، دمیلینیشن موضعی در ستون طرفی نخاع و با استفاده از لیزولسیتین ایجاد شد. یک هفته بعد از تزریق لیزولسیتین، محل لامینکتومی دوباره باز شد و برای گروه حامل، 10 میکرولیتر محیط کشت و برای گروه پیوند 10 میکرولیتر محیط کشت محتوی 106 × 1 سلول بنیادی نشان‌دار شده با رنگ Hoechst در محل ضایعه پیوند گردید. در گروه‌های شاهد و لیزولسیتین، محل جراحی قبلی باز و بدون هیچ گونه مداخله‌ای بار دیگر بسته شد. چهار هفته بعد از پیوند سلولی، به منظور ارزیابی حضور سلول‌های بنیادی در مناطق پیوند و بررسی نواحی دمیلینه و مناطق دوباره میلینه شده، از روش‌های ایمونوهیستوشیمی و میکروسکوپ الکترونی استفاده شد.یافته‌ها: بررسی تصاویر ایمونوهیستوشیمی، حضور سلول‌های بنیادی را چهار هفته بعد از پیوند در محل ضایعه نشان داد. همچنین، نتایج میکروسکوپ الکترونی، نشانگر افزایش بیشتر سنتز میلین در گروه پیوند سلولی نسبت به سایر گروه‌ها بود.نتیجه‌گیری: پیوند سلول‌های بنیادی مشتق از بافت چربی انسان، ممکن است روشی مناسب برای سلول درمانی در بیماری‌های نورودژنراتیو مانند بیماری MS باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Myelin Ultrastructure after Transplantation of Human Adipose Tissue-Derived Stem Cell in Rat Multiple Sclerosis Model

نویسندگان [English]

  • Nazem Ghasemi 1
  • shahnaz Razavi 2
  • Hosein Salehi 1
1 Assistant Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Multiple sclerosis (MS) is a kind of the chronic neurodegenerative diseases of central nervous system (CNS) which usually is associated with neurological disability. In this study, human adipose-derived stromal/stem cells (hADSCs) were transplanted into a rat model of multiple sclerosis (MS) and the efficiency of these cells in remyelination process was determined.Methods: Forty adult rats were randomly divided into control, lysolecithin, lysolecithin with medium (vehicle), and lysolecithin with human adipose-derived stromal/stem cells transplantation groups; then, focal demyelination was induced via lysolecithin injection into lateral column of spinal cord. One week after the lysolecithin injection, laminectomy site was re-exposed and for vehicle group, 10 µl of medium and for the transplantation group 10 µl of medium containing 1 × 106 stem cells was transplanted. For the control and lysolecithin groups, just laminectomy site was re-exposed and closed again without intervention. Four weeks after the cell transplantation, immunohistochemistry technique was used for assessment of the presence of stem cells in damaged spinal cord and to assess the extent of demyelination and remyelination, transmission electron microscope was used.Findings: Immunohistochemistry study four weeks after cell transplantation showed that the stem cell transplant existed in the lesion site. In addition, the electron microscope micrographs showed that myelin synthesis increased more in the cell transplantation group compared to the other groups.Conclusion: Human adipose tissue-derived stem cell transplantation may be an appropriate method for cell therapy in neurodegenerative diseases such as multiple sclerosis.

کلیدواژه‌ها [English]

  • Multiple Sclerosis
  • Stem cell
  • Lysolecithin
  • Cell transplantation
  1. Charct JM. Histologie de la scle´rose en plaques. Paris, France: Imprimerie L. Poupart- davyl; 1868.
  2. Lynch SG, Kroencke DC, Denney DR. The relationship between disability and depression in multiple sclerosis: the role of uncertainty, coping, and hope. Mult Scler 2001; 7(6): 411-6.
  3. Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372(9648): 1502-17.
  4. Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL, et al. The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011; 12: 62.
  5. Khan F, Turner-Stokes L, Ng L, Kilpatrick T. Multidisciplinary rehabilitation for adults with multiple sclerosis. J Neurol Neurosurg Psychiatry 2008; 79(2): 114.
  6. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 1996; 85(3): 299-302.
  7. Ebers GC, Sadovnick AD, Risch NJ. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 1995; 377(6545): 150-1.
  8. Fulgenzi A, Zanella SG, Mariani MM, Vietti D, Ferrero ME. A case of multiple sclerosis improvement following removal of heavy metal intoxication: lessons learnt from Matteo's case. Biometals 2012; 25(3): 569-76.
  9. Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. Semin Neurol 2008; 28(1): 17-28.
  10. Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 2010; 221(1-2): 7-14.
  11. Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 2009; 65(3): 304-15.
  12. Rizvi SA, Agius MA. Current approved options for treating patients with multiple sclerosis. Neurology 2004; 63(12 Suppl 6): S8-14.
  13. Ben-Hur T, Goldman SA. Prospects of cell therapy for disorders of myelin. Ann N Y Acad Sci 2008; 1142: 218-49.
  14. Yang J, Rostami A, Zhang GX. Cellular remyelinating therapy in multiple sclerosis. J Neurol Sci 2009; 276(1-2): 1-5.
  15. Razavi S, Mardani M, Kazemi M, Esfandiari E, Narimani M, Esmaeili A, et al. Effect of leukemia inhibitory factor on the myelinogenic ability of Schwann-like cells induced from human adipose-derived stem cells.Cell Mol Neurobiol 2013; 33(2): 283-9.
  16. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 2008; 60(5): 538-44.
  17. Kalbermatten DF, Schaakxs D, Kingham PJ, Wiberg M. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 2011; 344(2): 251-60.
  18. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007; 207(2): 267-74.
  19. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 2010; 63(9): 1544-52.
  20. Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, et al. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 2009; 27(1): 230-7.
  21. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24(4): 150-4.
  22. Boido M, Garbossa D, Vercelli A. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function. J Neurosurg Spine 2011; 15(1): 97-106.
  23. Ghasemi N, Razavi S, Mardani M, Esfandiari E, Salehi H, Zarkesh Esfahani SH. Transplantation of human adipose-derived stem cells enhances remyelination in lysolecithin-induced focal demyelination of rat spinal cord. Mol Biotechnol 2014; 56(5): 470-8.
  24. Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA. Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 2012; 313(1-2): 99-109.
  25. Barcellos LF, Oksenberg JR, Begovich AB, Martin ER, Schmidt S, Vittinghoff E, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72(3): 710-6.
  26. Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 2005; 113(9): 1250-6.
  27. Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006; 19(1): 80-94.
  28. Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung HP. Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2006; 2(4): 201-11.
  29. Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 2011; 9(3): 409-16.
  30. Preiningerova J. Oral laquinimod therapy in relapsing multiple sclerosis. Expert Opin Investig Drugs 2009; 18(7): 985-9.
  31. Vollmer T, Stewart T, Baxter N. Mitoxantrone and cytotoxic drugs' mechanisms of action. Neurology 2010; 74(Suppl 1): S41-S46.
  32. Racke MK, Lovett-Racke AE, Karandikar NJ. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 2010; 74(Suppl 1): S25-S30.
  33. Dhib-Jalbut S, Marks S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology 2010; 74(Suppl 1): S17-S24.
  34. Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, et al. The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev 2012; 21(6): 901-10.
  35. Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 2009; 21(6): 612-8.
  36. Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M, et al. Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 2007; 16(1): 41-55.
  37. Razavi S, Razavi MR, Zarkesh EH, Kazemi M, Mostafavi FS. Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Dev Growth Differ 2013; 55(6): 648-55.
  38. Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem 2001; 81(2): 312-9.
  39. Razavi S, Razavi MR, Kheirollahi-Kouhestani M, Mardani M, Mostafavi FS. Co-culture with neurotrophic factor secreting cells induced from adipose-derived stem cells: promotes neurogenic differentiation. Biochem Biophys Res Commun 2013; 440(3): 381-7.
  40. Sadan O, Melamed E, Offen D. Intrastriatal transplantation of neurotrophic factor-secreting human mesenchymal stem cells improves motor function and extends survival in R6/2 transgenic mouse model for Huntington's disease. PLoS Curr 2012; 4: e4f7f6dc013d4e.
  41. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011; 6(3): e17899.