نوع مقاله : Original Article(s)
نویسندگان
1 دانشجوی کارشناسی ارشد، گروه فیزیک پزشکی، دانشکدهی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
2 استادیار، گروه ریاضی کاربردی، دانشکدهی علوم و فناوریهای نوین، دانشگاه تحصیلات تکمیلی و فناوری پیشرفته، کرمان، ایران
3 استاد، گروه فیزیک پزشکی، دانشکدهی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Background: Hand radiographs are commonly used to evaluate bone maturity. So that the significant difference between the estimated bone age and the chronological age can indicate a developmental disorder. However, the manual evaluation of images is usually a time-consuming and observer-dependent process. Therefore, in this paper, an automatic method for the assessment of bone age using radiographs of children's hands is proposed.
Methods: In this fundamental-applied research, the collection of radiographic images of the Radiological Society of North America (RSNA) was used, and transfer learning methods were proposed. The input images were first pre-processed due to low quality. Then a pre-trained model based on DenseNet-121 was used to extract the discriminating spatial features.
Findings: Evaluations using five pre-trained models on the RSNA dataset showed that the DenseNet-121 model, after adjustment, could perform better than other models, with a mean absolute error of 9.8 months.
Conclusion: Skeletal maturity can be estimated with satisfactory accuracy using the DenseNet-121 model, and this method can help radiologists in quick and accurate measurement of bone age.
کلیدواژهها [English]
https://arxiv.org/abs/1409.1556