بررسی خصوصیات اپتیکی، فیزیکی و کوانتومی نانوذرات طلا و کاربردهای آن در تشخیص و درمان سرطان‌ها

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، گروه فیزیک پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

2 استاد، گروه فیزیک پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

نانوذرات طلا از پتانسیل بالایی برای تشخیص، بهبود و درمان سرطان برخوردار هستند. زیست پذیری بالا، تجمع انتخابی در سلول‌های سرطانی و سمیت پایین از جمله مزیت‌های این ذرات می‌باشد. تحقیقات قابل توجهی به استفاده از نانوذرات طلا به عنوان عامل افزایش دهنده‌ی کنتراست تصویربرداری رامان و تصویربرداری پرتو ایکس و نیز عامل گرمادرمانی و افزایش دهنده‌ی حساسیت پرتویی تومور پرداخته است. در مطالعه‌ی حاضر، خصوصیات اپتیکی، فیزیکی و کوانتومی نانوذرات طلا و همچنین چگونگی استفاده از این خصوصیات در زمینه‌های تشخیصی و درمانی سرطان مورد بحث و بررسی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Optical, Physical and Quantum Properties of Gold Nanoparticles and its Applications in Diagnosis and Treatment of Cancers

نویسندگان [English]

  • Zahra Arab-Bafrani 1
  • Daryoush Shahbazi-Gahrouei 2
1 PhD Candidate, Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Professor, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Today, it has been shown that gold nanoparticles have great potential to improve diagnosis and treatment of cancers. The special advantages of gold nanoparticle are high biocompatibility, selective accumulating at cancer cells and low toxicity. Considerable research is underway into the use of gold nanoparticle as contrast agent in Raman spectroscopy, X-ray imaging, photo-thermal agents and radiosensitizers. In this study, optical and physical and quantum properties of gold nanoparticle are discussed. Subsequently, medical application of gold nanoparticle, as a dual use in diagnosis and treatment of cancers, are considered.

کلیدواژه‌ها [English]

  • Gold nanoparticles
  • Medical application
  • Physical
  • Optical
  • Quantum
  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64(1): 9-29.
  2. Shahbazi-Gahrouei D, Williams M, Rizvi S, Allen BJ. In vivo studies of Gd-DTPA-monoclonal antibody and gd-porphyrins: potential magnetic resonance imaging contrast agents for melanoma. J Magn Reson Imaging 2001; 14(2): 169-74.
  3. Shahbazi-Gahrouei D, Rizvi SM, Williams MA, Allen BJ. In vitro studies of gadolinium-DTPA conjugated with monoclonal antibodies as cancer-specific magnetic resonance imaging contrast agents. Australas Phys Eng Sci Med 2002; 25(1): 31-8.
  4. Shahbazi-Gahrouei D, Williams M, Allen BJ. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength. Australas Radiol 2001; 45(3): 298-304.
  5. Shahbazi-Gahrouei D, Williams M, Allen BJ. Synthesis and application of Gadolinium -porpyrins as MR imaging agent for cancer detection. Iran Biomed J 2001; 5(2-3): 87-95.
  6. Shahbazi-Gahrouei D. Novel MR imaging contrast agents for cancer detection. J Res Med Sci 2009; 14(3): 141-7.
  7. Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007; 3(11): 1840-54.
  8. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008; 1: 17-32.
  9. Shahbazi-Gahrouei D, Abdolahi M. A novel method for quantitative analysis of anti-MUC1 expressing ovarian cancer cell surface based on magnetic cell separation. Int J Med Sci 2012; 12: 256-66.
  10. Abdolahi M, Shahbazi-Gahrouei D, Laurent S, Sermeus C, Firozian F, Allen BJ, et al. Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer. Contrast Media Mol Imaging 2013; 8(2): 175-84.
  11. Shahbazi-Gahrouei D, Abdolahi M, Zarkesh-Esfahani SH, Laurent S, Sermeus C, Gruettner C. Functionalized magnetic nanoparticles for the detection and quantitative analysis of cell surface antigen. Biomed Res Int 2013; 2013: 349408.
  12. Shahbazi-Gahrouei D, Ghasemian Z, Abdolahi M, Manouchehri S, Javanmard Sh, et al. In vitro Evaluation of Cobalt-Zinc Ferrite Nanoparticles Coated with DMSA on Human Prostate Cancer Cells. J Mol Biomark Diagn 2013; 4(3): 154.
  13. Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 2011; 22(15): 155101.
  14. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010; 12(7): 2313-33.
  15. Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010; 1(1): 13-28.
  16. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41(12): 1578-86.
  17. Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; 41(12): 1842-51.
  18. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005; 109(29): 13857-70.
  19. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res 2008; 41(12): 1587-95.
  20. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, et al. Chemical sensing and imaging with metallic nanorods. Chem Commun (Camb ) 2008; (5): 544-57.
  21. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater 2008; 7(6): 442-53.
  22. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008; 26(1): 83-90.
  23. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 2007; 7(6): 1591-7.
  24. Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 2007; 7(7): 1914-8.
  25. Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 2010; 11(6): 561-70.
  26. van der Zee J, Gonzalez GD, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000; 355(9210): 1119-25.
  27. Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 1996; 35(4): 731-44.
  28. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3(8): 487-97.
  29. Cherukuri P, Curley SA. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol 2010; 624: 359-73.
  30. Hainfeld JF, Lin L, Slatkin DN, Avraham DF, Vadas TM, Smilowitz HM. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine 2014; 10(8): 1609-17.
  31. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100(23): 13549-54.
  32. Jain S, Hirst DG, O'Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13.
  33. Essig M, Debus J, Schlemmer HP, Hawighorst H, Wannenmacher M, van KG. [Improved tumor contrast and delineation in the stereotactic radiotherapy planning of cerebral gliomas and metastases with contrast media-supported FLAIR imaging]. Strahlenther Onkol 2000; 176(2): 84-94.
  34. Bushong SC. Radiologic science for technologists: physics, biology, and protection. 9th ed. Philadelpia, PA: Mosby; 2015.165-8.
  35. Jackson PA, Rahman WN, Wong CJ, Ackerly T, Geso M. Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 2010; 75(1): 104-9.
  36. Yusa N, Jiang M, Mizuno K, Uesaka M. Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiol Phys Technol 2009; 2(1): 33-9.
  37. Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, et al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 2012; 7: 190.
  38. Wang Z, Wu L, Cai W. Size-tunable synthesis of monodisperse water-soluble gold nanoparticles with high X-ray attenuation. Chemistry 2010; 16(5): 1459-63.
  39. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005; 21(23): 10644-54.
  40. Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012; 33(27): 6408-19.
  41. Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004; 49(18): N309-N315.
  42. Zheng Y, Hunting DJ, Ayotte P, Sanche L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 2008; 169(1): 19-27.
  43. Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 2011; 79(2): 531-9.
  44. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 2009; 5(2): 136-42.
  45. Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011; 22(28): 285101.
  46. Chithrani DB, Jelveh S, Jalali F, van PM, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010; 173(6): 719-28.
  47. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol 2011; 100(3): 412-6.
  48. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 2011; 1: 18.
  49. Xiao F, Zheng Y, Cloutier P, He Y, Hunting D, Sanche L. On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 2011; 22(46): 465101.