تأثیر میدان مغناطیسی کم فرکانس بر سرعت رشد و تکثیر سلول‌های بنیادی مزانشیمی مشتق از بافت چربی انسانی

نوع مقاله : Original Article(s)

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه فیزیک و مهندسی پزشکی، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه فیزیک و مهندسی پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، گروه فیزیک و مهندسی پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دانشیار، گروه علوم تشریح و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: سلول‌های بنیادی به دلیل قابلیت تکثیر و تمایز به سلول‌های دیگر مدل خوبی برای بررسی اثرات میدان مغناطیسی کم فرکانس (Extremely low-frequency electromagnetic field یا ELF-EMF) بر سلول‌های بدن می‌باشند. بافت چربی به عنوان منبعی از سلول‌های بنیادی مزانشیمی شناخته می‌شود. در این مطالعه تأثیر تابش با شدت‌های مختلف بر میزان تکثیر بر سلول‌های بنیادی مزانشیمی مشتق‌شده از بافت چربی انسانی در زمان‌های تابش20 و 40 دقیقه بررسی شد.روش‌ها: در این مطالعه تأثیر تابش با شدت 5/0 و 1 میلی‌تسلا و فرکانس 50 هرتز بر میزان تکثیر سلول‌های بنیادی مزانشیمی مشتق‌شده از بافت چربی انسانی با زمان‌های تابش20 و 40 دقیقه در روز به مدت 7 روز متوالی بررسی گردید. از تکنیک MTT assay برای بررسی رشد و میزان بقای سلول‌ها و از رنگ‌آمیزی تریپان بلو به منظور ارزیابی میزان تکثیر سلول‌ها استفاده گردید. آنالیز داده‌ها با استفاده از آزمون One way ANOVA انجام شد.یافته‌ها: میزان تکثیر و بقای سلول‌ها در همه‌ی گروه‌های تابش به طور معنی‌داری بیشتر از گروه‌های شاهد بود (05/0 > P) و تنها گروه 1 میلی‌تسلا به مدت 40 دقیقه در روز، اختلاف معنی‌داری با گروه شاهد نداشت.نتیجه‌گیری: نتایج مطالعه‌ی حاضر نشان داد که تابش میدان مغناطیسی با شدت‌های 5/0 و 1 میلی‌تسلا با توجه به زمان تابش می‌تواند باعث تحریک رشد و تکثیر سلول‌ها شود. مکانیسم این تأثیر هنوز ناشناخته می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Extremely Low-Frequency (50 Hz) Field on Proliferation Rate of Human Adipose-Derived Mesenchymal Stem Cells

نویسندگان [English]

  • Marzieh Salimi 1
  • Daryoush Shahbazi-Gahrouei 2
  • Saeid Karbasi 3
  • Saied Kermani 3
  • Shahnaz Razavi 4
1 MSc Student, Department of Medical Physics and Medical Engineering, School of Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Associate Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: The effects of non-ionizing extremely low-frequency electromagnetic fields (ELF-EMF) chronic exposure on human beings due to its potential health hazards has become a focus of interest since many years ago. Stem cells are useful models for assessment of effects of ELF-EMF on other cell lines and human beings. Adipose tissue has been known source of multipotent stromal cells (MSCs), which can be obtained by a less invasive method and in large amounts compared with bone marrow stromal cells (BMSCs); so this study was done on human adipose-derived stem cells (hADSCs). The effect of ELF-EMF with intensity of 0.5 and 1 mT and 50 Hz on proliferation rates of hADSCs at 20 and 40 min/day for 7 days was assessed.Methods: MTT assay was used to determine the growth and metabolism of cells and Trypan blue test was also done for cell viability.Findings: The proliferation rate and growth of hADSCs in all exposure groups was significantly higher than that in sham groups except in group of 1 mT, 40 min/day (P < 0.05).Conclusion: The results showed that 0.5 and 1 mT magnetic strength fields can promote the proliferation rates of the hMSCs derived adipose tissue regarding the duration of exposure.

کلیدواژه‌ها [English]

  • Non-ionizing extremely low-frequency electromagnetic fields (ELF-EMF)
  • Human adipose-derived stem cells (hADSCs)
  • Adipose
  • Proliferation rate
  • Growth
  1. extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 2010; 29(4): 165-76.
  2. Ahlbom IC, Cardis E, Green A, Linet M, Savitz D, Swerdlow A. Review of the epidemiologic literature on EMF and Health. Environ Health Perspect 2001; 109(Suppl 6): 911-33.
  3. Czyz J, Nikolova T, Schuderer J, Kuster N, Wobus AM. Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells-the role of tumour suppressor p53. Mutat Res 2004; 557(1): 63-74.
  4. Aaron RK, Ciombor DM, Keeping H, Wang S, Capuano A, Polk C. "Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-b(1) expression". Bioelectromagnetics 2000; 21(1): 73.
  5. Kaviani Moghadam M, Firoozabadi SM, Janahmadi M. Reduction of F1 neuronal excitability by exposure to 217 Hz magnetic fields from GSM 900 mobile phone. Cell J Yakhteh 2009; 11(2): 176-83.
  6. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 1979; 109(3): 273-84.
  7. Feychting M, Forssen U, Floderus B. Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 1997; 8(4): 384-9.
  8. Schreiber GH, Swaen GM, Meijers JM, Slangen JJ, Sturmans F. Cancer mortality and residence near electricity transmission equipment: a retrospective cohort study. Int J Epidemiol 1993; 22(1): 9-15.
  9. Verkasalo PK, Pukkala E, Hongisto MY, Valjus JE, Jarvinen PJ, Heikkila KV, et al. Risk of cancer in Finnish children living close to power lines. BMJ 1993; 307(6909): 895-9.
  10. Morandi MA, Pak CM, Caren RP, Caren LD. Lack of an EMF-induced genotoxic effect in the Ames assay. Life Sci 1996; 59(3): 263-71.
  11. Savitz DA. Overview of occupational exposure to electric and magnetic fields and cancer: advancements in exposure assessment. Environ Health Perspect 1995; 103(Suppl 2): 69-74.
  12. Pacini S, Vannelli GB, Barni T, Ruggiero M, Sardi I, Pacini P, et al. Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability. Neurosci Lett 1999; 267(3): 185-8.
  13. De Mattei M, Caruso A, Traina GC, Pezzetti F, Baroni T, Sollazzo V. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 1999; 20(3): 177-82.
  14. Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, et al. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res 2006; 602(1-2): 135-42.
  15. Diniz P, Shomura K, Soejima K, Ito G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 2002; 23(5): 398-405.
  16. Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 2007; 28(7): 519-28.
  17. Bassett CA, Mitchell SN, Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 1982; 247(5): 623-8.
  18. Bassett CA, Schink-Ascani M. Long-term pulsed electromagnetic field (PEMF) results in congenital pseudarthrosis. Calcif Tissue Int 1991; 49(3): 216-20.
  19. Mishima S. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats. J UOEH 1988; 10(1): 31-45.
  20. Rubin CT, McLeod KJ, Lanyon LE. Prevention of osteoporosis by pulsed electromagnetic fields. J Bone Joint Surg Am 1989; 71(3): 411-7.
  21. Tabrah F, Hoffmeier M, Gilbert F, Jr., Batkin S, Bassett CA. Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner Res 1990; 5(5): 437-42.
  22. Wei H, Tan G, Manasi, Qiu S, Kong G, Yong P, et al. One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. Stem Cell Res 2012; 9(2): 87-100.
  23. Wobus AM, Guan K, Yang HT, Boheler KR. Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 2002; 185: 127-56.
  24. Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol 2005; 87(2-3): 213-23.
  25. Noriega-Luna B, Sabanero M, Sosa M, Avila-Rodriguez M. Influence of pulsed magnetic fields on the morphology of bone cells in early stages of growth. Micron 2011; 42(6): 600-7.
  26. Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z, et al. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 2011; 49(4): 753-61.
  27. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164(2): 247-56.
  28. Lu J, Moochhala S, Moore XL, Ng KC, Tan MH, Lee LK, et al. Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett 2006; 398(1-2): 12-7.
  29. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24(4): 150-4.
  30. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 2008; 17(4): 761-73.
  31. Casteilla L, Dani C. Adipose tissue-derived cells: from physiology to regenerative medicine. Diabetes Metab 2006; 32(5 Pt 1): 393-401.
  32. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec A Discov Mol Cell Evol Biol 2003; 272(1): 398-402.
  33. Guo Z, Yang J, Liu X, Li X, Hou C, Tang PH, et al. Biological features of mesenchymal stem cells from human bone marrow. Chin Med J (Engl) 2001; 114(9): 950-3.
  34. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
  35. Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH, et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005; 330(4): 1153-61.
  36. Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 2004; 324(2): 481-8.
  37. Long X, Olszewski M, Huang W, Kletzel M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev 2005; 14(1): 65-9.
  38. Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A 2005; 102(9): 3296-300.
  39. Huang T, He D, Kleiner G, Kuluz J. Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med 2007; 30(Suppl 1): S35-S40.
  40. Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 1999; 17(3): 171-7.
  41. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33(6): 919-26.
  42. Rao RR, Halper J, Kisaalita WS. Effects of 60 Hz electromagnetic field exposure on APP695 transcription levels in differentiating human neuroblastoma cells. Bioelectrochemistry 2002; 57(1): 9-15.
  43. Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 2008; 215(1): 129-39.
  44. Van Den Heuvel R, Leppens H, Nemethova G, Verschaeve L. Haemopoietic cell proliferation in murine bone marrow cells exposed to extreme low frequency (ELF) electromagnetic fields. Toxicol In Vitro 2001; 15(4-5): 351-5.
  45. Kwee S, Raskmark P. Changes in cell proliferation due to environmental non-ionizing radiation 1. ELF electromagnetic fields. Bioelectrochemistry and Bioenergetics 1995; 36(2): 109-14.
  46. Sullivan K, Balin AK, Allen RG. Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics 2011; 32(2): 140-7.
  47. Chang WH, Chen LT, Sun JS, Lin FH. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 2004; 25(6): 457-65.
  48. Chang K, Chang WH, Huang S, Huang S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 2005; 23(6): 1308-14.
  49. Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, et al. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 2000; 18(4): 637-46.
  50. Falahati SA, Bolouri B, Norouzi J, Masjedian F. The effect of extremely low frequency magnetic fields on growth of E.Coli. J Shaheed Sadoughi Univ Med Sci 2000; 7(4): 47-53. [In Persian].
  51. Sul AR, Park SN, Suh H. Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med J 2006; 47(6): 852-61.
  52. Winker R, Ivancsits S, Pilger A, Adlkofer F, Rudiger HW. Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res 2005; 585(1-2): 43-9.
  53. Falone S, Grossi MR, Cinque B, D'Angelo B, Tettamanti E, Cimini A, et al. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 2007; 39(11): 2093-106.
  54. Mann K, Roschke J. Sleep under exposure to high-frequency electromagnetic fields. Sleep Med Rev 2004; 8(2): 95-107.
  55. Villa M, Mustarelli P, Caprotti M. Biological effects of magnetic fields. Life Sci 1991; 49(2): 85-92.
  56. Ivancsits S, Pilger A, Diem E, Jahn O, Rudiger HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res 2005; 583(2): 184-8.
  57. Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, et al. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 2010; 226(1): 173-82.
  58. Sarvestani AS, Abdolmaleki P, Mowla SJ, Ghanati F, Heshmati E, Tavasoli Z, et al. Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells. Micron 2010; 41(2): 101-4.
  59. Pacini S, Gulisano M, Peruzzi B, Sgambati E, Gheri G, Gheri BS, et al. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect Prev 2003; 27(5): 327-32.
  60. Bekhite MM, Figulla HR, Sauer H, Wartenberg M. Static magnetic fields increase cardiomyocyte differentiation of Flk-1(+) cells derived from mouse embryonic stem cells via Ca(2+) influx and ROS production. Int J Cardiol 2012.
  61. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4(7): 552-65.