بخش‌بندی سلول‌های مؤثر در سرطان میلوم متعدد با استفاده از مدل‌های تغییر شکل‌پذیر و خوشه‌بندی K-Means

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه بیوالکتریک و مهندسی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، گروه بیوالکتریک و مهندسی پزشکی، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، گروه پاتولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: میلوم متعدد (Multiple Myeloma)، دومین سرطان خونی شایع است. این بیماری، به علت سرطانی شدن دسته‌ای از سلول‌ها به نام پلاسماسل‌ها (Plasma cells) ایجاد می‌شود. شناسایی و شمارش پلاسماسل‌ها، اطلاعات ارزشمندی را به منظور تشخیص این بیماری برای پاتولوژیست‌ها فراهم می‌کند. فرایند شمارش و بررسی دستی پلاسماسل‌ها، زمان‌بر و با توجه به طبیعت خسته کننده‌ی آن، در معرض خطا می‌باشد. به همین دلیل، وجود ابزاری کامپیوتری در کنار پاتولوژیست به منظور کمک در بخش‌بندی و استخراج سلول‌ها، می‌تواند بسیار مفید باشد. از این رو، پژوهش حاضر با هدف ارایه‌ی یک ابزار کامپیوتری برای بخش‌بندی سلول‌های مؤثر در بیماری میلوم متعدد از روی تصاویر میکروسکوپی انجام شد.روش‌ها: در روش پیشنهادی، پس از بهبود کیفیت تصاویر با استفاده از تطبیق هیستوگرام و فیلتر میانه، سلول‌ها با استفاده از مدل تغییر شکل‌پذیر Chan-Vese استخراج شدند. همچنین، برای بخش‌بندی سلول‌های به هم چسبیده، الگوریتم آب‌پخشان اصلاح شده، استفاده گردید. سپس، هسته‌ها با به کارگیری روش خوشه‌بندی K-means استخراج شدند.یافته‌ها: روش پیشنهادی بر روی 30 تصویر میکروسکوپی، شامل 370 سلول مورد ارزیابی قرار گرفت. نتایج محاسبه شده از روش پیشنهادی، نشان داد که معیار ارزیابی، حساسیت، دقت، صحت و Dice Similarity Coefficient (DSC) به ترتیب 01/89، 95/89، 71/97، 63/98 و 86/93 درصد برای بخش‌بندی سلول و 43/91، 48/92، 13/96، 53/98 و 47/95 درصد برای بخش‌بندی هسته بودند.نتیجه‌گیری: در این پژوهش، روش جدیدی جهت بخش‌بندی و استخراج سلول‌های مؤثر در تشخیص سرطان میلوم متعدد از تصاویر میکروسکوپی با استفاده از مدل‌های تغییر شکل‌پذیر و روش خوشه‌بندی ارایه شد. نتایج ارزیابی نشان می‌دهد که الگوریتم پیشنهادی، عملکرد بخش‌بندی را در مقایسه با روش‌های قبلی بهبود داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Segmentation of Effective Cells in Multiple Myeloma Cancer Using Deformable Models and K-Means Clustering

نویسندگان [English]

  • Hadis Golmohammadi 1
  • Alireza Vard 2
  • Ardeshir Talebi 3
1 MSc Student, Department of Bioelectrics and Biomedical Engineering AND Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Multiple myeloma is the second most common hematopoietic cancer. This disease is caused by the cancerous category of cells called plasma cells. Detecting and counting plasma cells provide valuable information for pathologists to diagnose this disease. The manual counting and considering of plasma cells are time consuming and due to the tedious nature of this process, it is subject to error. Thus, a computer-aided tool for pathologists to help in the diagnostic process can be very useful. For this purpose, this research presented a computer tool for segmentation of effective cells in multiple myeloma from microscopic images.Methods: In proposed method, after improving the quality of the images using histogram matching and median filter, the cells were extracted using the Chan-Vese deformable model. In addition, for splitting touching cells, the Modified Watershed algorithm was used. Then, the nuclei were extracted applying the k-means clustering method.Findings: The proposed method was evaluated on 30 microscopic images containing 370 cells. The calculated results of the proposed method showed that similarity measures, sensitivity, precision, accuracy and Dice Similarity Coefficient (DSC) respectively were 89.01%, 89.95%, 97.71%, 98.63%, and 93.86% for cell segmentation, and 91.43%, 92.48%, 96.13%, 98.53%, and 95.47% for nucleus segmentation.Conclusion: In this research, a novel method was presented for segmentation and extraction of effective cells in the diagnosis of multiple myeloma cancer from microscopic images using deformable models and clustering method. The evaluation results show that the proposed algorithm have improved segmentation performance compared to the previous methods.

کلیدواژه‌ها [English]

  • Multiple myeloma
  • Plasma cells
  • Image processing
  1. Hall J. Guyton and Hall textbook of medical physiology. vol. 53. 12th ed. Philadelphia, PA: Saunders; 2011.
  2. Chen-Kiang S. Biology of plasma cells. Best Pract Res Clin Haematol 2005; 18(4): 493-507.
  3. Sadr A, Jahed M, Salehian P, Eslami A. Leukocyte's nucleus segmentation using active contour in YCbCr colour space. Proceedings of 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES 2010); 2010 Nov 30-2 Dec; Kuala Lumpur, Malaysia. p. 257–60.
  4. Prinyakupt J, Pluempitiwiriyawej C. Segmentation of white blood cells and comparison of cell morphology by linear and naive Bayes classifiers. Biomed Eng Online 2015; 14: 63.
  5. Eom S, Kim S, Shin V, Ahn B. Leukocyte segmentation in blood smear images using region-based active contours. In: Blanc-Talon J, Philips W, Popescu D, Scheunders P, editors. Advanced Concepts for Intelligent Vision Systems: 8th International Conference, ACIVS 2006, Antwerp, Belgium, September 18-21, 2006. Berlin, Germany: Springer; 2006. p. 867-76.
  6. Ghane N, Vard A, Talebi A, Nematollahy P. Segmentation of white blood cells from microscopic images using a novel combination of K-means clustering and modified watershed algorithm. J Med Signals Sens 2017; 7(2): 92-101.
  7. Li Y, Zhu R, Mi L, Cao Y, Yao D. Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Comput Math Methods Med 2016; 2016: 9514707.
  8. Sarrafzadeh O, Dehnavi AM. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Adv Biomed Res 2015; 4: 174.
  9. Saeedizadeh Z, Talebi A, Mehri-Dehnavi A, Rabbani H, Sarrafzadeh O. Extraction and recognition of myeloma cells in microscopic images of bone marrow aspiration. J Isfahan Med Sch 2015; 32(310): 1976-84. [In Persian].
  10. Gonzalez RC, Woods RE. Digital image processing. vol. 49. Upper Saddle River, NJ: Pearson; 2008.
  11. Kass M, Witkin A, Terzopoulos D. Snakes - Active contour models. Int J Comput Vis 1987; 1(4): 321-31.
  12. Vard AR, Nilchi ARN, Moallem P. Object detetion and image segmentation using texture pressure energy in parametric active contour models. J Chin Inst Eng 2008; 31(4): 649-57.
  13. Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001; 10(2): 266-77.
  14. Dice LR. Measures of the amount of ecologic association between species. Ecology 1945; 26(3): 297-302.
  15. Saeedizadeh Z, Mehri DA, Talebi A, Rabbani H, Sarrafzadeh O, Vard A. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier. J Microsc 2016; 261(1): 46-56.
  16. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 2003; 56(11): 1129-35.