تأثیر پیاسکلیدین بر القای کندروژنز از سلول‌های بنیادی مشتق از چربی انسان در داربست فیبرین

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم تشریح، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، گروه علوم تشریح، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 استادیار، گروه علوم تشریح، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دانشجوی کارشناسی ارشد، گروه مهندسی بافت، دانشکده‌ی مهندسی پایه، دانشگاه آزاد اسلامی، واحد نجف‌آباد، نجف‌آباد، ایران

5 دانشجوی دکتری، گروه ژنتیک، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: آسیب‌های بافت غضروف یکی از مشکلات موجود در کلینیک است و روش‌های درمانی رایج منجر به ترمیم کامل آسیب‌ها نمی‌شود. از این رو، مهندسی بافت در این جهت مورد توجه است. در مهندسی بافت از مواد زیستی، عوامل رشد و سلول مناسب استفاده می‌شود. از آن جایی که عوامل رشد مانند TGF-β (Transforming growth factor beta) منجر به هایپرتروفه شدن بافت غضروف تهیه شده می‌گردد، دستیابی به عوامل القا کننده‌ی مناسب‌تر ضرورت دارد. مطالعات نشان داده است که پیاسکلیدین بر کندروسیت‌های کشت یافته تأثیر مثبت داشته است. از این رو، در این تحقیق تأثیر پیاسکلیدین بر القای کندروژنز و غضروف‌سازی از سلول‌های بنیادی مورد بررسی قرار گرفت.روش‌ها: نمونه‌های چربی از سه بیمار، طی جراحی لیپوساکشن به دست آمد. سلول‌های بنیادی مشتق از چربی (Adipose tissue-derived stem cells یا ADSCs) از بافت چربی استخراج و تا پاساژ سوم تکثیر داده شد. سپس، سلول‌ها در داربست فیبرین تحت تأثیر محیط کشت القای کندروژنیک به مدت 21 روز کشت داده شد. میزان تکثیر و بقا‌ی سلول‌ها با روش MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] و میزان بیان ژن‌های اگریکان،کلاژن II و X با استفاده از تکنیک Real-time PCR ( Real-time polymerase chain reaction) مورد ارزیابی قرار گرفت.یافته‌ها: میزان تکثیر و بقای سلول‌ها در داربست فیبرین، در گروهای مختلف، تفاوت قابل توجهی نداشت (05/0 < P)؛ اما میزان بیان ژن‌های کلاژن II و اگریکان تحت پیاسکلیدین به طور چشم‌گیری در مقایسه با گروه دارای TGF-β افزایش و بیان ژن کلاژن X به طور معنی‌داری کاهش نشان داد (01/0 > P).نتیجه‌گیری: ترکیب پیاسکلیدین در روند القای غضروف‌سازی از سلول‌های بنیادی به طور کامل مؤثر است و بر کاهش هایپرتروفه شدن سلولی نیز تأثیر چشم‌گیری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Piasclidin on Induction of Chondrogenesis by Human Adipose-Derived Stem Cells in Fibrin Scaffold

نویسندگان [English]

  • Mojtaba Esmaeily 1
  • Batool Hashemibeni 2
  • Ali Valiani 3
  • Noushin Amirpour 3
  • Babak Purmollaabbasi 4
  • Mohammad Kazemi 5
1 MSC Student, Department of Anatomical Sciences, School of Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Assistant Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 MSC Student, Department of Tissue Engineering, School of Basic Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
5 PhD Student, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Cartilage tissue damage is one of the problems in the clinic and the current treatment methods would not be lead to full repair of damage; therefore, tissue engineering in this field is considered. In tissue engineering, biomaterials such as growth factors and appropriate cells are used. Since the growth factors such as transforming growth factor beta (TGF-β) leads to hypertrophy of cartilage, it is essential to achieve the appropriate inducer factors. Studies have shown that piasclidine had a positive effect on cultured chondrocytes. In this study, the effect of the piasclidine on chondrogenesis of human adipose-derived stem cells was examined.Methods: Fat samples were obtained from three liposuction surgeries. Stem cells were extracted from adipose tissue and proliferated via the third passage. Then, the cells were transferred to the fibrin scaffold and  cultured for 21 days under the influence of the chondrogenic imedium in three groups. The rate of cell proliferation was evaluated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method and the rate of gene expression of aggrecan and types II and X collagen was evaluated via real-time polymerase chain reaction (PCR) method.Findings: The rate of proliferation and survival of cells in a fibrin scaffold was not different significantly between the groups (P > 0.05); but the gene expression of type II collagen and aggrecan was significantly more expression of type X collagen was significantly less in piasclidine group compared to the of TGF-β group (P < 0.01).Conclusion: Piasclidine is an effective factor in induction of chondrogenesis of stem cells and also has a significant effect on reduction of the cell hypertrophy.

کلیدواژه‌ها [English]

  • Adipose-derived stem cell
  • Chondrogenesis
  • Piasclidine
  1. Fazelipour S, Kiaei SB, Eghtesad AH, Tootian Z. The effect of soya bean meal on tibial articular cartilage growth in mice after suckling period: A histomorphometric and biochemical study. Turk J Med Sci 2012; 42(2): 253-8.
  2. Mardani M, Hashemibeni B, Ansar MM, Zarkesh Esfahani SH, Kazemi M, Goharian V, et al. Comparison between chondrogenic markers of differentiated chondrocytes from adipose derived stem cells and articular chondrocytes in vitro. Iran J Basic Med Sci 2013; 16(6): 763-73.
  3. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5(1): 17-26.
  4. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
  5. Breen A, Dockery P, O'Brien T, Pandit A. Fibrin scaffold promotes adenoviral gene transfer and controlled vector delivery. J Biomed Mater Res A 2009; 89(4): 876-84.
  6. Zhao H, Ma L, Gong Y, Gao C, Shen J. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. J Mater Sci Mater Med 2009; 20(1): 135-43.
  7. Ragetly GR, Griffon DJ, Lee HB, Fredericks LP, Gordon-Evans W, Chung YS. Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis. Acta Biomater 2010; 6(4): 1430-6.
  8. Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 2011; 32(30): 7503-13.
  9. Buser Z, Liu J, Thorne KJ, Coughlin D, Lotz JC. Inflammatory response of intervertebral disc cells is reduced by fibrin sealant scaffold in vitro. J Tissue Eng Regen Med 2014; 8(1): 77-84.
  10. Henrotin YE, Labasse AH, Jaspar JM, De Groote DD, Zheng SX, Guillou GB, et al. Effects of three avocado/soybean unsaponifiable mixtures on metalloproteinases, cytokines and prostaglandin E2 production by human articular chondrocytes. Clin Rheumatol 1998; 17(1): 31-9.
  11. Zhao H, Ma L, Gao C, Shen J. A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: fabrication, physical properties, and cell responsiveness. J Biomed Mater Res B Appl Biomater 2009; 88(1): 240-9.
  12. Davidson EB, Vitters E, van Beuningen H, van de Loo F, van den Berg W, van der Kraan P. Osteophytes in experimental osteoarthritis resemble TGF-β-induced osteophytes. limited role of BMP in early osteoarthritic osteophyte formation. In: Davidson EB, editor. TGF-β in osteoarthritis. Nijmegen, Netherlands: Radboud University Nijmegen; 2007.
  13. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T. Chondrocyte-alginate constructs with or without TGF-beta1 produces superior extracellular matrix expression than monolayer cultures. Mol Cell Biochem 2013; 376(1-2): 11-20.
  14. Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 2010; 38(9): 2896-909.
  15. Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 2006; 54(4): 1222-32.
  16. Saraf A, Mikos AG. Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev 2006; 58(4): 592-603.
  17. Pavelka K, Coste P, Geher P, Krejci G. Efficacy and safety of piascledine 300 versus chondroitin sulfate in a 6 months treatment plus 2 months observation in patients with osteoarthritis of the knee. Clin Rheumatol 2010; 29(6): 659-70.
  18. Mauviel A, Daireaux M, Hartmann DJ, Galera P, Loyau G, Pujol JP. Effects of unsaponifiable extracts of avocado/soy beans (PIAS) on the production of collagen by cultures of synoviocytes, articular chondrocytes and skin fibroblasts. Rev Rhum Mal Osteoartic 1989; 56(2): 207-11. [In French].
  19. Altinel L, Saritas ZK, Kose KC, Pamuk K, Aksoy Y, Serteser M. Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid. Tohoku J Exp Med 2007; 211(2): 181-6.
  20. Hashemibeni B, Razavi Sh, Esfandiary E, Karbasi S, Mardani M, Nasresfahani M. Induction of chondrogenic differentiation of human adipose-derived stem cells with TGF-β3 in pellet culture system. Iran J Basic Med Sci 2008; 11(1): 10-7.
  21. Yang SH, Wu CC, Shih TT, Chen PQ, Lin FH. Three-dimensional culture of human nucleus pulposus cells in fibrin clot: comparisons on cellular proliferation and matrix synthesis with cells in alginate. Artif Organs 2008; 32(1): 70-3.
  22. Esfandiary E, Valiani A, Hashemibeni B, Moradi I, Narimani M. The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro. Adv Biomed Res 2014; 3: 40.
  23. Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 2010; 29(4): 165-76.
  24. Creecy CM, O'Neill CF, Arulanandam BP, Sylvia VL, Navara CS, Bizios R. Mesenchymal stem cell osteodifferentiation in response to alternating electric current. Tissue Eng Part A 2013; 19(3-4): 467-74.
  25. Ruettger A, Neumann S, Wiederanders B, Huber R. Comparison of different methods for preparation and characterization of total RNA from cartilage samples to uncover osteoarthritis in vivo. BMC Res Notes 2010; 3: 7.
  26. Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage 2001; 9(1): 22-32.
  27. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release 2006; 114(1): 1-14.
  28. Rabie A, Esfandiari E, Fesharaki M, Sanaie M, Aminmansur B, Hashemibeni B. Access to a three dimentional osteoblasts culture originating human carvaria in Iran. J Isfahan Med Sch 2010; 27(102): 777-87. [In Persian].
  29. Harrison P, Wilbourn B, Debili N, Vainchenker W, Breton-Gorius J, Lawrie AS, et al. Uptake of plasma fibrinogen into the alpha granules of human megakaryocytes and platelets. J Clin Invest 1989; 84(4): 1320-4.
  30. Le Nihouannen D, Guehennec LL, Rouillon T, Pilet P, Bilban M, Layrolle P, et al. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials 2006; 27(13): 2716-22.
  31. Connelly JT, Vanderploeg EJ, Mouw JK, Wilson CG, Levenston ME. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs. Tissue Eng Part A 2010; 16(6): 1913-23.
  32. Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA, et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 2007; 13(7): 1615-21.
  33. Wei Y, Hu Y, Hao W, Han Y, Meng G, Zhang D, et al. A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells. J Orthop Res 2008; 26(1): 27-33.
  34. Thompson WD, Smith EB, Stirk CM, Marshall FI, Stout AJ, Kocchar A. Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J Pathol 1992; 168(1): 47-53.
  35. Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J 1999; 77(5): 2813-26.
  36. Carr ME. Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb Haemost 1988; 59(3): 535-9.
  37. Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003; 24(14): 2497-502.
  38. Lin N, Lin J, Bo L, Weidong P, Chen S, Xu R. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Prolif 2010; 43(5): 427-34.
  39. Girandon L, Kregar-Velikonja N, Bozikov K, Barlic A. In vitro models for adipose tissue engineering with adipose-derived stem cells using different scaffolds of natural origin. Folia Biol (Praha) 2011; 57(2): 47-56.
  40. Henrotin YE, Deberg MA, Crielaard JM, Piccardi N, Msika P, Sanchez C. Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. J Rheumatol 2006; 33(8): 1668-78.
  41. Weiss S, Hennig T, Bock R, Steck E, Richter W. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 2010; 223(1): 84-93.