التهاب و آنژیوژنز: نقش سلول‌ها و عوامل التهابی

نوع مقاله : Review Article

نویسندگان

1 دانشیار، گروه فارماکولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی زنجان، زنجان، ایران

2 استاد، مرکز تحقیقات التهاب نوروژنیک و گروه فیزیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

التهاب نه تنها جزیی از دفاع بدن در برابر عفونت است؛ بلکه نقش کلیدی در مکانیسم ترمیم بافتی دارد. سیتوکین‌ها و عوامل رشد آزاد شده در محل التهاب، برای ترمیم بافت ضروری هستند و مهم‌ترین عامل رگ‌زایی، عامل رشد اندوتلیال عروق (Vascular endothelial growth factor یا VEGF) است. فرایند آنژیوژنز یا رگ‌زایی، نه تنها سلول‌های اندوتلیال را درگیر می‌کند، بلکه سایر سلول‌ها از جمله سلول‌های التهابی را نیز درگیر می‌کند. کمبود اکسیژن یا هیپوکسی، مهم‌ترین محرک ایجاد این فرایندها می‌باشد که سبب تجمع ماکروفاژها و سلول‌های ایمنی می‌گردد و هم‌زمان، به عنوان اصلی‌ترین عامل محرک رگ‌‌زایی نیز مطرح شده است. تعدادی از عواملی که در ایجاد التهاب نقش دارند، به طور مستقیم یا غیر مستقیم بر رگ‌زایی نیز مؤثرند و از سوی دیگر، تعدادی از عوامل التهابی، اثرات رگ‌زایی و تعدادی دیگر اثرات ضد رگ‌زایی دارند. بنا بر این، به نظر می‌رسد ارتباط نزدیکی بین دو پدیده‌ی التهاب و رگ‌زایی وجود داشته باشد. هدف از انجام این مطالعه، بررسی ارتباط بین پدیده التهاب و رگ‌زایی و نقش سلول‌ها و واسطه‌های التهابی در فرایند رگ‌زایی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Inflammation and Angiogenesis: Role of Inflammatory Cells and Mediators

نویسندگان [English]

  • Ali Rostami 1
  • Majid Khazaei 2
1 Associate Professor, Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
2 Professor, Neurogenic Inflammation Research Center AND Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
چکیده [English]

Inflammation is not only a protective mechanism during tissue injury, but also has a key role in tissue repair. Cytokines and growth factors which are released during inflammation are critical for tissue repair and one of the well-known angiogenic factors is vascular endothelial growth factor. Angiogenesis involves endothelial cells as well as inflammatory cells which release several angiogenic factors. Hypoxia is the most important stimulator for inflammation and angiogenesis. Some of the inflammatory mediators are directly and/or indirectly alter angiogenesis and on the other hand, some of angiogenic factors have inflammatory effects. Therefore, it seems that there is a close relationship between angiogenesis and inflammation. This review evaluated the relationship between inflammation and angiogenesis and the role of inflammatory cells and mediators in angiogenesis process.

کلیدواژه‌ها [English]

  • Inflammation
  • Angiogenesis
  • Inflammatory cells
  1. Benelli R, Lorusso G, Albini A, Noonan DM. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des 2006; 12(24): 3101-15.
  2. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res 2004; 95(9): 858-66.
  3. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354(6): 610-21.
  4. Tracey KJ. The inflammatory reflex. Nature 2002; 420(6917): 853-9.
  5. Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 2007; 10(3): 149-66.
  6. Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 2000; 52(2): 237-68.
  7. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6(4): 389-95.
  8. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9(6): 653-60.
  9. Khazaei M, Fallahzadeh AR, Sharifi MR, Afsharmoghaddam N, Javanmard SH, Salehi E. Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats. Clinics (Sao Paulo) 2011; 66(8): 1419-24.
  10. Tahergorabi Z, Khazaei M. The relationship between inflammatory markers, angiogenesis, and obesity. ARYA Atheroscler 2013; 9(4): 247-53.
  11. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407(6801): 249-57.
  12. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438(7070): 932-6.
  13. Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays. Iran J Basic Med Sci 2012; 15(6): 1110-26.
  14. Murdoch C, Muthana M, Lewis CE. Hypoxia regulates macrophage functions in inflammation. J Immunol 2005; 175(10): 6257-63.
  15. Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 2010; 345: 105-20.
  16. Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer 2013; 132(12): 2721-9.
  17. Paul SA, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. J Cell Physiol 2004; 200(1): 20-30.
  18. Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol 2008; 28(11): 1928-36.
  19. Naldini A, Carraro F. Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 2005; 4(1): 3-8.
  20. Noonan DM, de Lerma BA, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 2008; 27(1): 31-40.
  21. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33(7): 829-837.
  22. Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013; 35: 175-85.
  23. Khazaei M, Moien-Afshari F, Laher I. Vascular endothelial function in health and diseases. Pathophysiology 2008; 15(1): 49-67.
  24. Amjadi F, Javanmard SH, Zarkesh-Esfahani H, Khazaei M, Narimani M. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production. J Exp Clin Cancer Res 2011; 30: 21.
  25. Nematollahi S, Nematbakhsh M, Haghjooyjavanmard S, Khazaei M, Salehi M. Inducible nitric oxide synthase modulates angiogenesis in ischemic hindlimb of rat. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153(2): 125-9.
  26. Elmi S, Sallam NA, Rahman MM, Teng X, Hunter AL, Moien-Afshari F, et al. Sulfaphenazole treatment restores endothelium-dependent vasodilation in diabetic mice. Vascul Pharmacol 2008; 48(1): 1-8.
  27. Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23(6): 622-33.
  28. Ley K. Pathways and bottlenecks in the web of inflammatory adhesion molecules and chemoattractants. Immunol Res 2001; 24(1): 87-95.
  29. Nematbakhsh M, Ghadesi M, Hosseinbalam M, Khazaei M, Gharagozloo M, Dashti G, et al. Oestrogen promotes coronary angiogenesis even under normoxic conditions. Basic Clin Pharmacol Toxicol 2008; 103(3): 273-7.
  30. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3(3): 221-7.
  31. Pacifico F, Leonardi A. NF-kappaB in solid tumors. Biochem Pharmacol 2006; 72(9): 1142-52.
  32. Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 2006; 27(12): 552-8.
  33. Frantz S, Vincent KA, Feron O, Kelly RA. Innate immunity and angiogenesis. Circ Res 2005; 96(1): 15-26.
  34. Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol 2014; 9(2): 142-60.
  35. Jung Y, Isaacs JS, Lee S, Trepel J, Liu ZG, Neckers L. Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 2003; 370(Pt 3): 1011-7.
  36. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 2009; 114(4): 844-59.
  37. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2013; 34(1): 39-58.
  38. Backhed F, Normark S, Schweda EK, Oscarson S, Richter-Dahlfors A. Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect 2003; 5(12): 1057-63.
  39. Grote K, Schutt H, Schieffer B. Toll-like receptors in angiogenesis. ScientificWorldJournal 2011; 11: 981-91.
  40. Murad S. Toll-like receptor 4 in inflammation and angiogenesis: a double-edged sword. Front Immunol 2014; 5: 313.
  41. Satoh M, Ishikawa Y, Minami Y, Takahashi Y, Nakamura M. Role of Toll like receptor signaling pathway in ischemic coronary artery disease. Front Biosci 2008; 13: 6708-15.
  42. Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ, et al. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol 2003; 163(2): 711-21.
  43. Wu WK, Llewellyn OP, Bates DO, Nicholson LB, Dick AD. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiology 2010; 215(9-10): 796-803.
  44. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285(21): 1182-6.
  45. Landskron G, de la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014: 149185.
  46. Yan L, Anderson GM, DeWitte M, Nakada MT. Therapeutic potential of cytokine and chemokine antagonists in cancer therapy. Eur J Cancer 2006; 42(6): 793-802.
  47. Khazaei M, Saeidi H, Shabanikia N, Kalantari E, Tahergorabi Z. Changes of serum inflammatory markers after gamma-secretase inhibitor administration mice. J Isfahan Med Sch 2013; 31(233): 486-92. [In Persian].
  48. Kim OH, Kang GH, Noh H, Cha JY, Lee HJ, Yoon JH, et al. Proangiogenic TIE2(+)/CD31 (+) macrophages are the predominant population of tumor-associated macrophages infiltrating metastatic lymph nodes. Mol Cells 2013; 36(5): 432-8.
  49. Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005; (94): 209-31.
  50. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3): 161-74.
  51. Clauss M, Pipp F, Issbrucker K, Weich H, Heil M, Schaper W. Dissection of monocyte and endothelial activities by using VEGF-receptor specific ligands. Adv Exp Med Biol 2003; 522: 75-82.
  52. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 2001; 97(3): 785-91.
  53. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87(8): 3336-43.
  54. Aplin AC, Gelati M, Fogel E, Carnevale E, Nicosia RF. Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 2006; 27(1): 20-8.
  55. Moldovan L, Moldovan NI. Role of monocytes and macrophages in angiogenesis. EXS 2005; (94): 127-46.
  56. Anghelina M, Moldovan L, Zabuawala T, Ostrowski MC, Moldovan NI. A subpopulation of peritoneal macrophages form capillarylike lumens and branching patterns in vitro. J Cell Mol Med 2006; 10(3): 708-15.
  57. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford ) 2005; 44(1): 7-16.
  58. Heryanto B, Girling JE, Rogers PA. Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 2004; 127(5): 613-20.
  59. Benelli R, Albini A, Noonan D. Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chem Immunol Allergy 2003; 83: 167-81.
  60. Na YJ, Yang SH, Baek DW, Lee DH, Kim KH, Choi YM, et al. Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Hum Reprod 2006; 21(7): 1846-55.
  61. Schruefer R, Sulyok S, Schymeinsky J, Peters T, Scharffetter-Kochanek K, Walzog B. The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice. J Vasc Res 2006; 43(1): 1-11.
  62. Melder RJ, Koenig GC, Munn LL, Jain RK. Adhesion of activated natural killer cells to tumor necrosis factor-alpha-treated endothelium under physiological flow conditions. Nat Immun 1996; 15(2-3): 154-63.
  63. Jain RK, Koenig GC, Dellian M, Fukumura D, Munn LL, Melder RJ. Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev 1996; 15(2): 195-204.
  64. Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 1999; 93(5): 1612-21.
  65. Chaouat G, Ledee-Bataille N, Dubanchet S. Immune cells in uteroplacental tissues throughout pregnancy: a brief review. Reprod Biomed Online 2007; 14(2): 256-66.
  66. Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, Rusnati M, et al. Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol 2005; 175(5): 2788-92.
  67. Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 2012; 1822(1): 2-8.
  68. Flynn EA, Schwartz JL, Shklar G. Sequential mast cell infiltration and degranulation during experimental carcinogenesis. J Cancer Res Clin Oncol 1991; 117(2): 115-22.
  69. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 2007; 104(50): 19977-82.
  70. Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 2004; 114(9): 1317-25.
  71. Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD. The codependence of angiogenesis and chronic inflammation. FASEB J 1997; 11(6): 457-65.
  72. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87(6): 2095-147.
  73. Weinreich DM, Elaraj DM, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res 2003; 63(18): 5957-61.
  74. Apte RN, Voronov E. Interleukin-1--a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 2002; 12(4): 277-90.
  75. Bar D, Apte RN, Voronov E, Dinarello CA, Cohen S. A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB J 2004; 18(1): 161-3.
  76. Salven P, Hattori K, Heissig B, Rafii S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J 2002; 16(11): 1471-3.
  77. Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol 2014; 26(1): 38-47.
  78. Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC. Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 1992; 140(3): 539-44.
  79. Li B, Vincent A, Cates J, Brantley-Sieders DM, Polk DB, Young PP. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res 2009; 69(1): 338-48.
  80. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007; 67(2): 585-92.
  81. Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13(2): 155-68.
  82. Yao L, Pike SE, Setsuda J, Parekh J, Gupta G, Raffeld M, et al. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood 2000; 96(5): 1900-5.
  83. Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 1996; 87(9): 3877-82.
  84. Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, et al. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 2008; 29(6): 1148-56.
  85. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14(21): 6735-41.
  86. Eldesoky A, Shouma A, Mosaad Y, Elhawary A. Clinical relevance of serum vascular endothelial growth factor and interleukin-6 in patients with colorectal cancer. Saudi J Gastroenterol 2011; 17(3): 170-3.
  87. Huang SP, Wu MS, Shun CT, Wang HP, Lin MT, Kuo ML, et al. Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 2004; 11(4): 517-27.
  88. Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 2003; 22(10): 1517-27.
  89. Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998; 37(1): 19-29.
  90. Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, et al. The expression of transforming growth factor-beta1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer 1999; 86(8): 1455-62.
  91. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 1995; 121(6): 1845-54.