القای تشکیل سلول‌های شبه عصبی از سلول‌های بنیادی مشتق از بافت چربی در هیدروژل آلژینات با استفاده از روش تشکیل نوروسفر

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 استاد، گروه علوم تشریح و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشجوی دکتری، گروه علوم تشریح و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

3 دانشیار، گروه علوم تشریح و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دانشجوی دکتری، گروه ژنتیک، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: هیدروژل‌ها محیط سه بعدی مناسبی را برای کشت انواع مختلف سلول‌ها فراهم می‌کنند و انکپسوله کردن سلول در هیدروژل‌ها روش مناسبی جهت استفاده در مهندسی بافت است. آلژینات، هیدروژل زیست سازگاری است که سیستم مناسبی برای انکپسوله کردن سلول‌ها فراهم می‌کند. به علاوه، سلول‌های بنیادی جدا شده از بافت چربی، سلول‌های بنیادی مزانشیمی هستند که ممکن است منبع مناسبی از سلول‌ها جهت استفاده در سلول درمانی به صورت اتولوگ باشند.روش‌ها: در این مطالعه سرنوشت سلول‌های بنیادی جدا شده از بافت چربی انکپسوله در هیدروژل آلژینات را که به مدت یک هفته در محیط کشت القای عصبی کشت شدند، بررسی شد. با استفاده از روش MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] و تکنیک ایمنوسیتوشیمی به ترتیب میزان تکثیر و تمایز عصبی این سلول‌ها بررسی شد.یافته‌ها: افزایش معنی‌داری در میانگین درصد سلول‌های GFAP (Glial fibrillary acidic protein)، Nestin و 2MAP (2Microtubule-associated protein) مثبت و کاهش معنی‌داری در میزان تکثیر و بقای سلول‌های انکپسوله در مقایسه با سلول‌های کشت تک لایه مشاهده شد.نتیجه‌گیری: هیدروژل آلژینات می‌تواند محیط مناسبی برای تمایز عصبی سلول‌های بنیادی جدا شده از بافت چربی فراهم کند.

کلیدواژه‌ها


عنوان مقاله [English]

Induction of Neuron-Like Cells from Adipose Derived Stem Cells in Alginate Hydrogel, Using Neurospheres Formation

نویسندگان [English]

  • Shahnaz Razavi 1
  • Zahra Khosravizadeh 2
  • Hamid Bahramian 3
  • Mohammad Kazemi 4
1 Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 PhD Student, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Associate Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 PhD Student, Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Hydrogels provide appropriate three-dimensional environment for culture of a variety of cells and cell encapsulation in hydrogels is a promise plan for tissue engineering applications. Alginate is an attractive biocompatible hydrogel that provides a supportive system for the encapsulated cells. Moreover, human adipose derived stem cells are mesenchymal stem cells that might be a suitable source of cells for use in autologous cell therapy.Methods: In this study, we examined the fate of human adipose derived stem cells encapsulated in alginate hydrogel that cultured in neural induction medium for 1 week. Using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and immunocytochemical analysis, the proliferation rate, and viability and neural differentiation of human adipose derived stem cells were evaluated.Findings: We observed a significant increase in the mean percent of Nestin, glial fibrillary acidic protein (GFAP) and microtubule-associated protein-2 (MAP2) positive cells and significant reduction of proliferation rate and viability in encapsulated cells versus monolayer induced cells.Conclusion: These findings showed that alginate hydrogel can provide a suitable environment for neural differentiation of human adipose derived stem cells.

کلیدواژه‌ها [English]

  • Hydrogel alginate
  • Human adipose-derived stem cells
  • Neural differentiation
  • Proliferation
  1. Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006; 27(7): 974-85.
  2. Dutta RC, Dutta AK. Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 2009; 27(4): 334-9.
  3. Hunt NC, Smith AM, Gbureck U, Shelton RM, Grover LM. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater 2010; 6(9): 3649-56.
  4. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001; 101(7): 1869-79.
  5. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 2008; 14(2): 149-65.
  6. Lee KY, Alsberg E, Mooney DJ. Degradable and injectable poly (aldehyde guluronate) hydrogels for bone tissue engineering. J Biomed Mater Res 2001; 56(2): 228-33.
  7. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Polymer concepts in tissue engineering. J Biomed Mater Res 1998; 43(4): 422-7.
  8. Li X, Liu T, Song K, Yao L, Ge D, Bao C, et al. Culture of neural stem cells in calcium alginate beads. Biotechnol Prog 2006; 22(6): 1683-9.
  9. Read TA, Stensvaag V, Vindenes H, Ulvestad E, Bjerkvig R, Thorsen F. Cells encapsulated in alginate: a potential system for delivery of recombinant proteins to malignant brain tumours. Int J Dev Neurosci 1999; 17(5-6): 653-63.
  10. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1): 45-53.
  11. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6(8): 623-33.
  12. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24(24): 4337-51.
  13. Li T, Shi XW, Du YM, Tang YF. Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res A 2007; 83(2): 383-90.
  14. Kemp MR, Fryer PJ. Enhancement of diffusion through foods using alternating electric fields. Innovative Food Science and Emerging Technologies 2007; 8(1): 143-53.
  15. Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 2006; 27(19): 3560-9.
  16. Petruzzo P, Cappai A, Ruiu G, Dessy E, Rescigno A, Brotzu G. Development of biocompatible barium alginate microcapsules. Transplant Proc 1997; 29(4): 2129-30.
  17. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials 1997; 18(8): 583-90.
  18. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release 2007; 119(1): 5-24.
  19. Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004; 35(2): 562-9.
  20. Kong HJ, Mooney DJ. The effects of poly (ethyleneimine) (PEI) molecular weight on reinforcement of alginate hydrogels. Cell Transplant 2003; 12(7): 779-85.
  21. Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res 2003; 82(11): 903-8.
  22. Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 2001; 80(11): 2025-9.
  23. Hsiong SX, Huebsch N, Fischbach C, Kong HJ, Mooney DJ. Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules 2008; 9(7): 1843-51.
  24. Schagemann JC, Mrosek EH, Landers R, Kurz H, Erggelet C. Morphology and function of ovine articular cartilage chondrocytes in 3-d hydrogel culture. Cells Tissues Organs 2006; 182(2): 89-97.
  25. Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M, et al. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng 2006; 12(4): 821-30.
  26. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J 2008; 95(9): 4426-38.
  27. Barker CF, Billingham RE. Immunologically privileged sites. Adv Immunol 1977; 25: 1-54.
  28. Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC. Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 2006; 12(11): 3007-19.
  29. Strem BM, Hedrick MH. The growing importance of fat in regenerative medicine. Trends Biotechnol 2005; 23(2): 64-6.
  30. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
  31. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100(9): 1249-60.
  32. de GM, Schuurs TA, van SR. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 2004; 121(1): 141-50.
  33. DiMuzio P, Tulenko T. Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J Vasc Surg 2007; 45(Suppl A): A99-103.
  34. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 2008; 60(5): 538-44.
  35. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011; 6(3): e17899.
  36. Razavi S, Razavi MR, Kheirollahi-Kouhestani M, Mardani M, Mostafavi FS. Co-culture with neurotrophic factor secreting cells induced from adipose-derived stem cells: promotes neurogenic differentiation. Biochem Biophys Res Commun 2013; 440(3): 381-7.
  37. Kalbermatten DF, Schaakxs D, Kingham PJ, Wiberg M. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 2011; 344(2): 251-60.
  38. Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, et al. Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin. Glia 2011; 59(2): 267-77.
  39. Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000; 12(12): 4243-54.
  40. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109(10): 1292-8.
  41. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 2002; 294(2): 371-9.
  42. Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 2003; 111(6): 1922-31.
  43. Mulder L. Cell adhesion on alginate scaffolds for tissue engineering of aortic valve-a review. Eindhoven, Netherlands: Faculty of Biomedical Engineering, Eindhoven University Technology; 2002. p. 22-34.
  44. Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 2006; 77(2): 242-52.
  45. Retta SF, Ternullo M, Tarone G. Adhesion to matrix proteins. Methods Mol Biol 1999; 96: 125-30.
  46. Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 2002; 80(3): 305-12.
  47. Ma HL, Hung SC, Lin SY, Chen YL, Lo WH. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 2003; 64(2): 273-81.
  48. Purcell EK, Singh A, Kipke DR. Alginate composition effects on a neural stem cell-seeded scaffold. Tissue Eng Part C Methods 2009; 15(4): 541-50.
  49. Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009; 30(27): 4695-9.
  50. Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 2007; 28(36): 5518-25.
  51. Cheng A, Coksaygan T, Tang H, Khatri R, Balice-Gordon RJ, Rao MS, et al. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J Neurochem 2007; 100(6): 1515-30.
  52. Xie X, Tang Z, Chen J, Yang J, Zeng W, Liu N, et al. Neurogenesis of adipose-derived stem cells in hydrogel. J Huazhong Univ Sci Technolog Med Sci 2011; 31(2): 174-7.