کاربرد روش تجزیه و تحلیل ریخت‌شناسی در بخش‌بندی اتوماتیک شش لایه‌ی زیرین شبکیه در تصاویر Optical Coherence Tomography (OCT)

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی پزشکی، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، گروه مهندسی پزشکی، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی و مرکز تحقیقات پردازش سیگنال و تصاویر پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: شبکیه، داخلی‌ترین بافت چشم است و به کمک عصب بینایی اطلاعات تصویری را به مغز ارسال می‌نماید. این بخش از چشم، ساختار لایه‌ای دارد و طراحی روشی که بتواند بدون تأثیر گرفتن از نوع اختلال تصویر و میزان آن و همچنین پایین بودن کنتراست تصویر، مرزهای لایه‌ها را به ‌درستی مشخص نماید، از اهمیت فراوانی برخوردار می‌باشد. در این مطالعه، روش تلفیقی از دو روش تجزیه و تحلیل ریخت‌شناسی (MCA یا Morphological component analysis) و برنامه‌نویسی پویا (DP یا Dynamic programming) برای بخش‌بندی اتوماتیک شش لایه‌ی زیرین شبکیه به ‌کار گرفته شد.روش‌ها: پایگاه داده شامل 55 نمونه‌ی اخذ شده از افراد طبیعی با استفاده از دستگاه TOPCON-OCT-1000 بود. این مطالعه، در دو مرحله صورت گرفت. برای تجزیه‌ و تحلیل ریخت‌شناسی، دیکشنری هر تصویر با استفاده از خوشه‌بندی برداری به کمک مقادیر ویژه (K-SVD) محاسبه گردید و سپس روش MCA، روی دیکشنری‌های حاصل ‌شده اعمال گردید و بخش‌های کارتون و بافت تصویر با انتخاب پایه‌های مناسب تفکیک شد. بخش‌بندی به روش DP در تصویر کارتون اجرا گردید و سطوح Retinal pigment epithelium (RPE)، Verhoeff's memberane (VM)، Outer segment layer (OSL)، Inner collagenous layer (ICL)، Inner synaptic layer (ISL) و Outer limiting membrane (OLM) مشخص شدند.یافته‌ها: با مقایسه‌ی نتایج به ‌دست‌آمده با استانداردهای موجود، مشاهده شد که کمترین خطا، مربوط به سطح OSL با مقدار خطای 167/0 ± 030/0 بود. میزان خطای سطوح RPE، VM، ICL، ISL و OLM به ترتیب 33/0 ± 66/0-، 31/0 ± 59/0-، 49/0 ± 00/1-، 61/0 ± 72/1- و 51/0 ± 05/1- بود.نتیجه‌گیری: تجزیه ‌و تحلیل ریخت‌شناسی به کمک روش DP، می‌تواند به‌ صورت یک روش اتوماتیک در بخش‌بندی شش لایه‌ی زیرین شبکیه عمل کند و بدون نیاز به انجام پیش ‌پردازش، از صحت قابل قبولی در نتایج بخش‌بندی برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Morphological Component Analysis for Automatic Segmentation of Six Lower Retina Layers in Optical Coherence Tomography Images

نویسندگان [English]

  • Leila Niknam 1
  • Hosein Rabbani 2
1 MSc Student, Department of Biomedical Engineering, School of Advanced Technologies in Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Department of Biomedical Engineering, School of Advanced Technologies in Medicine AND Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Retina is the innermost tissue in human eye which sends visual information to the brain by means of optic nerve. Designing an intra-retinal layer segmentation method which can detect the retina surfaces properly in the presence of noise and lack of contrast is an important step in ophthalmology. In this study the combination of morphological component analysis (MCA) and dynamic programming (DP) is used automatically for segmentation of optical coherence tomography (OCT) images.Methods: Data set for this study was 55 samples which were taken from normal people by Topcon OCT-1000. This study had two phases. In MCA phase the image dictionary was created by clustering with eigenvalues (k-SVD), and then the image was decomposed to cartoon and texture parts by selecting proper bases. In the second phase segmentation was done by the dynamic programming (DP) method on cartoon part and the retinal pigment epithelium (RPE), Verhoeff's memberane (VM), outer segment layer (OSL), inner collagenous layer (ICL), inner synaptic layer (ISL), and outer limiting membrane (OLM) layers were detected.Findings: Comparing the obtained results with gold standard (manual segmentation) shows that minimum error belongs to OSL surface and its error in the form of mean ± SD (standard derivation) is 0.030 ± 0.167. For other surfaces the error is calculated in this way from left to right for RPE, VM, ICL, ISL, OLM:-0.66±  0.33, -0.59 ± 0.31, -1.00 ± 0.49, -1.72  ±0.61, -1.05  ±0.51.Conclusion: MCA in combination with DP can work as an automatic method for six lower intra retina layers' segmentation with acceptable accuracy. One of the main advantages of this method is omitting preprocessing phase for segmentation.

کلیدواژه‌ها [English]

  • Segmentation
  • Dynamic programming
  • Morphological component analysis
  1. Fernandez-Vigo JI, Garcia-Feijoo J, Martinez-de-la-Casa JM, Garcia-Bella J, Fernandez-Vigo JA. Morphometry of the trabecular meshwork in vivo in a healthy population using fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2015; 56(3): 1782-8.
  2. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 2010; 18(18): 19413-28.
  3. Bruckstein AM, Donoho DL, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 2009; 51(1): 34-81.
  4. Elad M. Sparse and redundant representations. New York, NY: Springer; 2010.
  5. Starck JL, Elad M, Donoho D. Redundant multiscale transforms and their application for morphological component separation. Adv Imag Elect Phys 2004; 132: 287-348.
  6. Abolghasemi V, Ferdowsi S, Sanei S. Blind separation of image sources via adaptive dictionary learning. IEEE Trans Image Process 2012; 21(6): 2921-30.
  7. Elad M, Starck JL, Querre P, Donoho DL. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl Comput Harmon Anal 2005; 19(3): 340-58.
  8. Bobin J, Starck JL, Fadili JM, Moudden Y, Donoho DL. Morphological component analysis: an adaptive thresholding strategy. IEEE Trans Image Process 2007; 16(11): 2675-81.
  9. Xiyuan H, Weiping X, Peng S, Hwang WL. Multiple component predictive coding framework of still images. Proceedings of IEEE International Conference on Multimedia and Expo; 2011 Jul 11-15; Barcelona, Spain. p. 1-6.
  10. Tosic I, Frossard P. Dictionary learning. IEEE Signal Processing Magazine 2011; 28(2): 27-38.
  11. Mortensen E, Morse B, Barrett W, Udupa J. Adaptive boundary detection using `live-wire' two-dimensional dynamic programming. Proceedings of Computers in Cardiology; 1992 Oct 11-14; Durham, NC, USA. p. 635-8.
  12. Mitchell SC, Lelieveldt BP, van der Geest RJ, Bosch HG, Reiber JH, Sonka M. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 2001; 20(5): 415-23.
  13. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995; 113(3): 325-32.
  14. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991; 254(5035): 1178-81.
  15. George A, Dillenseger JA, Weber A, Pechereau A. Optical coherence tomography image processing. Investigat Ophthalmol Vis Sci 2000; 41: 165-73.
  16. Koozekanani D, Boyer K, Roberts C. Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans Med Imaging 2001; 20(9): 900-16.
  17. Gregori G, Knighton RW. A robust algorithm for retinal thickness measurements using optical coherence tomography (Stratus OCT). Invest Ophthalmol Vis Sci 2004; 45(13): 3007.
  18. Herzog A, Boyer KL, Roberts C. Robust extraction of the optic nerve head in optical coherence tomography. In: Sonka M, Kakadiaris IA, Kybic J, editors. Computer vision and mathematical methods in medical and biomedical image analysis. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2004. p. 395-407.
  19. Shahidi M, Wang Z, Zelkha R. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. Am J Ophthalmol 2005; 139(6): 1056-61.
  20. Baroni M, Fortunato P, La Torre A. Towards quantitative analysis of retinal features in optical coherence tomography. Med Eng Phys 2007; 29(4): 432-41.
  21. Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I, Chen R, et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2008; 49(4): 1571-9.
  22. Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R. Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 2008; 146(5): 679-87.
  23. Koprowski R, Wrobel Z. Layers recognition in tomographic eye image based on random contour analysis. In: Koprowski R, Wozniak M, editors. Computer Recognition Systems 3.Berlin, Germany: Springer Berlin Heidelberg; 2009. p. 471-8.
  24. Lu S, Cheung CY, Liu J, Lim JH, Leung CK, Wong TY. Automated layer segmentation of optical coherence tomography images. IEEE Trans Biomed Eng 2010; 57(10): 2605-8.
  25. Boyer KL, Herzog A, Roberts C. Automatic recovery of the optic nervehead geometry in optical coherence tomography. IEEE Trans Med Imaging 2006; 25(5): 553-70.
  26. Tan O, Li G, Lu AT, Varma R, Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 2008; 115(6): 949-56.
  27. Kajic V, Povazay B, Hermann B, Hofer B, Marshall D, Rosin PL, et al. Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Opt Express 2010; 18(14): 14730-44.
  28. Fernandez DC, Villate N, Puliafito CA, Rosenfeld PJ. Comparing total macular volume changes measured by Optical Coherence Tomography with retinal lesion volume estimated by active contours. Invest Ophthalmol Vis Sci 2004; 45(13): 3072.
  29. Mishra A, Wong A, Bizheva K, Clausi DA. Intra-retinal layer segmentation in optical coherence tomography images. Opt Express 2009; 17(26): 23719-28.
  30. Yazdanpanah A, Hamarneh G, Smith B, Sarunic M. Intra-retinal layer segmentation in optical coherence tomography using an active contour approach. Med Image Comput Comput Assist Interv 2009; 12(Pt 2): 649-56.
  31. Somfai GM, Jozsef M, Chetverikov D, DeBuc D. Active contour detection for the segmentation of optical coherence tomography images of the retina. Invest Ophthalmol Vis Sci 2014; 55(13): 4793.
  32. Mayer MA, Hornegger J, Mardin CY, Tornow RP. Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients. Biomed Opt Express 2010; 1(5): 1358-83.
  33. Ghorbel I, Rossant F, Bloch I, Tick S, Paques M. Automated segmentation of macular layers in OCT images and quantitative evaluation of performances. Pattern Recognition 2011; 44(8): 1590-603.
  34. Fuller A, Zawadzki R, Choi S, Wiley D, Werner J, Hamann B. Segmentation of three-dimensional retinal image data. IEEE Trans Vis Comput Graph 2007; 13(6): 1719-26.
  35. Mayer MA, Tornow RP, Bock R, Hornegger J, Kruse FE. Automatic nerve fiber layer segmentation and geometry correction on spectral domain OCT images using fuzzy C-means clustering. Invest Ophthalmol Vis Sci 2008; 49(13): 1880.
  36. Vermeer KA, van der Schoot J, Lemij HG, de Boer JF. Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomed Opt Express 2011; 2(6): 1743-56.
  37. Garvin MK, Abramoff MD, Kardon R, Russell SR, Wu X, Sonka M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans Med Imaging 2008; 27(10): 1495-505.
  38. Abramoff MD, Lee K, Niemeijer M, Alward WL, Greenlee EC, Garvin MK, et al. Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head. Invest Ophthalmol Vis Sci 2009; 50(12): 5778-84.
  39. Lee K, Abramoff MD, Niemeijer M, Garvin MK, Sonka M. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head. Proceedings of SPIE-The International Society for Optical Engineering; 2010 Mar 11; San Diego, CA, USA.
  40. Yang Q, Reisman CA, Wang Z, Fukuma Y, Hangai M, Yoshimura N, et al. Automated layer segmentation of macular OCT images using dual-scale gradient information. Opt Express 2010; 18(20): 21293-307.
  41. Kafieh R, Rabbani H, Abramoff MD, Sonka M. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map. Med Image Anal 2013; 17(8): 907-28.
  42. Kafieh R, Rabbani H, Kermani S. A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens 2013; 3(1): 45-60.
  43. Kafieh R, Rabbani H, Hajizadeh F, Abramoff MD, Sonka M. Thickness mapping of eleven retinal layers segmented using the diffusion maps method in normal eyes. J Ophthalmol 2015; 2015: 259123.
  44. Sonka M, Halavac V, Boyle R. Image processing, analysis, and machine vision. New York, NY: Springer; 2010.