رجیستر کردن تصاویر Optical Coherence Tomography دیسک نوری و تصاویر فوندوس با استفاده از الگوریتم‌های SURF و RANSAC

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی پزشکی، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، گروه مهندسی پزشکی، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: رجیستر کردن تصاویر فرایندی است که در آن دو تصویر از یک ناحیه که دارای شرایط یا زمان‏های تصویربرداری متفاوتی هستند و یا با دستگاه‌های متفاوتی گرفته شده‌اند، برای دستیابی به اطلاعات دقیق‏تر و جزیی‏تر بر هم منطبق می‌شوند. هدف از انجام این مطالعه، رجیستر کردن تصاویر سه بعدی OCT (Optical coherence tomography) دیسک نوری و تصاویر فوندوس بود.روش‌ها: داده‌های مطالعه‌ی حاضر با استفاده از دستگاه 3D-OCT1000 مدل Topcon از بیمارستان فیض اصفهان جمع‌آوری گردید و شامل تصاویر سه بعدی OCT دیسک نوری و دو بعدی رنگی فوندوس چشم بود. تحقیق بر روی 40 داوطلب با چشم طبیعی انجام گرفت. در اولین مرحله با میانگین‌گیری از سطوح تصاویر سه بعدی دیسک نوری، پروجکشن آن‌ها به دست آمد، سپس نقاط و بردارهای ویژگی رگ‌های استخراج شده‌ی تصاویر دو بعدی پروجکشن و بردارهای ویژگی با هم مطابقت داده شدند. با استفاده از الگوریتم RANSAC (Random sample consensus)، نقاط غیر تطابق با تخمین بهترین تابع تبدیل حذف گردید و در نهایت انتقال، مقیاس و زاویه‌ای که برای تغییر تصاویر OCT دیسک نوری به منظور رجیستر کردن با تصاویر فوندوس مورد نیاز بود، به دست آمد.یافته‌ها: بهترین شاخص‌ها برای داده‌های مطالعه‌ی آستانه‌ی تطابق در روش SURF (Speeded-Up Robust Features) برابر با 100 و بیشینه‌ی فاصله‌ی بین نقاط در روش RANSAC برابر با 15 بود که خطای میانگین مربعات (Mean square error یا MSE) آن‌ها به ترتیب 0272/0 و 0268/0 به دست آمد. همچنین، به علت عدم وجود تبدیل پروجکشن حاضر بین داده‌های OCT و فوندوس و برای تخمین RANSAC، استفاده از تابع شباهت که تنها مقادیر انتقال، چرخش و مقیاس را تنظیم می‌نماید، به نتایج بهتری منجر خواهد شد. حاصل خطای کلی برای 40 داده‌ی چشم طبیعی با انتخاب مقادیر شاخص‌های بهینه، 0038/0 ± 0268/0 به دست آمد.نتیجه‌گیری: رجیستر کردن تصاویر پروجکشن OCT و تصاویر فوندوس رنگی، به طوری که بتوان اطلاعات تصویر OCT و تصویر فوندوس را ترکیب نمود، می‌تواند اطلاعات آناتومیک ارزشمندی از چشم در اختیار چشم‌پزشکان قرار دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Registration of Optical Coherence Tomography (OCT) of Optic Nerve Head and Fundus Images Using Speeded-Up Robust Features (SURF) and Random Sample Consensus (RANSAC) Algorithms

نویسندگان [English]

  • Alieh Ahdi 1
  • Hossein Rabbani 2
  • Alireza Vard 2
1 MSc Student, Department of Biomedical Engineering, School of Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Department of Biomedical Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Registration of images is the process of matching two images of an area or a scene with different conditions or imaging times or taken by different sets to achieve more accurate and detailed information. The purpose of this study was registration of three-dimensional optical coherence tomography (OCT) optic nerve head and fundus images.Methods: Data used in this study were taken via 3D-OCT (Topcon model 1000) and contained images of three-dimensional OCT and two-dimensional colored fundus. This study was performed on 40 volunteers with normal eyes. In the first step, the projection of 3D-OCT images was gotten; then, the projection images of extracted vessels of two-dimensional fundus were achieved. Speeded-up robust features (SURF) algorithm was used to find the points and their feature vectors and then to match the feature vectors. In the next step, eliminated outliers points were deleted using Random sample consensus (RANSAC) algorithm. Finally, the scale and the angle for changing optic disc OCT images to be registered with fundus image were achieved.Findings: Combining the projections of OCT and colored fundus images were well done using SURF and RANSAC algorithms. The best obtained parameters were match threshold of 100 in SURF algorithm and maximum distance of 15 in RANSAC algorithm with the mean square errors of 0.0272 and 0.0268, respectively. Due to lack of conversion of projection between the data of OCT and fundus images, for estimating the RANSAC algorithm, similarity function that just adjusted the values of transfer, rotation and scale, would lead to better results. The overall error for the data of 40 normal eyes selecting optimal values of parameters was 0.0038 ± 0.0268.Conclusion: Registration of projection of OCT and fundus images via combining the information of OCT and fundus images can provide valuable anatomical information from the eyes for ophthalmologists.Keywords: Optic disk, Optical coherence tomography (OCT) images, Registration, Speeded-up robust features (SURF) algorithm, Random sample consensus (RANSAC) algorithm

کلیدواژه‌ها [English]

  • Optic disk
  • Optical coherence tomography (OCT) images
  • Registration
  • Speeded-up robust features (SURF) algorithm
  • Random sample consensus (RANSAC) algorithm
  1. Marsh BC, Cantor LB, WuDunn D, Hoop J, Lipyanik J, Patella VM, et al. Optic nerve head (ONH) topographic analysis by stratus OCT in normal subjects: correlation to disc size, age, and ethnicity. J Glaucoma 2010; 19(5): 310-8.
  2. Burgoyne CF. Image analysis of optic nerve disease. Eye (Lond ) 2004; 18(11): 1207-13.
  3. Kernt M, Kampik A. Imaging of the peripheral retina. Oman J Ophthalmol 2013; 6(Suppl 1): S32-S35.
  4. Morishita K, Omori Sh, Yamagata Sh, Yokoyama T, Sano K, Ogushi A. Image registration method [Patent: US4644582 A]. 1987.
  5. Goshtasby AA. Introduction. 2-D and 3-D Image Registration. Hoboken, NJ: John Wiley and Sons; 2004.
  6. Thevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 1998; 7(1): 27-41.
  7. Mokhtarian F, Abbasi S. Shape similarity retrieval under affine transforms. Pattern Recognition 2002; 35(1): 31-41.
  8. Brown LG. A survey of image registration techniques. ACM Comput Surv 1992; 24(4): 325-76.
  9. Golabbakhsh M, Rabbani H. Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model. IET Image Processing 2013; 7(8): 768-76.
  10. Li Y, Gregori G, Knighton RW, Lujan BJ, Rosenfeld PJ. Registration of OCT fundus images with color fundus photographs based on blood vessel ridges. Opt Express 2011; 19(1): 7-16.
  11. Niemeijer M, Garvin MK, Lee K, van Ginneken B, Abramoff MD, Sonka M. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching. Medical Imaging 2009: Image Processing 2009; 7259: 1-8.
  12. Mahmudi T, Kafieh R, Rabbani H, Mehri Dehnavi A, Akhlagi M. Comparison of macular OCTs in right and left eyes of normal people. Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging 2014; 9038: 1-6.
  13. Doost-Hosseini A. Vessel centerlines extraction from Fundus Fluorescein Angiogram based on Hessian analysis of directional curvelet subbands. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013 May 26-31; Vancouver, Canada.
  14. Pedersen JT. Study group SURF: Feature detection and description. Aarhus, Denmark: Department of Computer Science, Aarhus University;2011.
  15. Zhang M, Li Z, Zhang CN, ai H. Adaptive feature extraction and image matching based on haar wavelet transform and SIFT. International Journal of Digital Content Technology and its Applications 2012; 6(7): 1-8.
  16. Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-Up Robust Features (SURF). Comput Vis Image Underst 2008; 110(3): 346-59.
  17. Pahlberg T, Hagman O, Thurley M. Recognition of boards using wood fingerprints based on a fusion of feature detection methods. Comput Electron Agr 2015; 111: 164-73.
  18. Matas J, Chum O. Randomized RANSAC with sequential probability ratio test. 2005. p. 1727-32.
  19. Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 1981; 24(6): 381-95.
  20. Ghergherehchi, M.; Seung Yeol Kim; Afarideh, H.; Yoon Sang Kim, "RANdom sample consensus (RANSAC) algorithm for enhancing overlapped etched track counting," in Image Processing, IET , vol.9, no.2, pp.97-106, 2 2015.
  21. Kang M, Gao J, Tang L. Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration. Proc Int Conf Mach Learn Appl 2011; 1: 501-4.
  22. Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest Ophthalmol Vis Sci 2015; 56(3): 1482-92.