تحلیل و مدل‌سازی تأثیر شدت توربولانس جریان خون بر گسیختگی گویچه‌های قرمز (خونکافت مکانیکی)

نوع مقاله : Original Article(s)

نویسندگان

1 استادیار، گروه حرارت و سیالات، دانشکده‌ی مهندسی مکانیک و هوافضا، دانشگاه صنعتی شیراز، شیراز، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشکده‌ی مهندسی، دانشگاه تربیت مدرس، تهران، ایران

3 کارشناس ارشد میکروبیولوژی، دانشکده‌ی علوم زیستی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مقدمه: خونکافت مکانیکی یکی از موانع اصلی در توسعه‌ی تجهیزات قلبی و عروقی مانند ابزارهای گردش کمکی خون، دریچه‌های قلب مصنوعی و پمپ‌های خون است. در اکثر تحقیقات انجام شده در این زمینه، بیشتر به نقش عدد رینولدز جریان بر نرخ گسیختگی گویچه‌های قرمز و مقدار هموگلوبین آزاد شده توجه شده و کمتر به تأثیر پارامترهای کیفی میدان توربولانس (شدت و مقیاس طولی) پرداخته شده است.روش‌ها: در این مقاله بر اساس یک روش به طور کامل تحلیلی، رابطه‌ای برای پیش‌بینی امکان رخ‌داد خونکافت مکانیکی در شرایط توربولانسی ارایه شده است. در این رابطه، نقش عدد رینولدز و شدت نسبی توربولانس بر رخ‌داد خونکافت به وضوح نشان داده شده است. تطابق نتایج با برخی از داده‌های تجربی موجود و در دسترس، حاکی از این است که مدل ریاضی پیشنهاد شده از دقت نسبی خوبی برخوردار است.یافته‌ها: نتایج این تحقیق نشان داد که گویچه‌های قرمز بسته به مقدار عدد رینولدز جریان، شدت توربولانس 20-10 درصد را می‌توانند تحمل نمایند. نتایج حاکی از این است که با افزایش عدد رینولدز جریان، حداکثر شدت توربولانس قابل تحمل توسط گویچه‌های قرمز کاهش می‌یابد.نتیجه‌گیری: در این مقاله برای اولین بار نشان داده شد که علاوه بر مقدار عدد رینولدز جریان، مقدار شدت نسبی توربولانس نیز بر رخ‌داد خونکافت مؤثر است. بدین منظور، یک معیار تحلیلی برای پیش‌بینی رخ‌داد خونکافت ارایه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of the Effects of Turbulence Intensity on Mechanical Hemolysis of Red Blood Cells

نویسندگان [English]

  • Amir Omidvar 1
  • Hassan Khaleghi 2
  • Elham Amini 3
1 Assistant Professor, Department of Heat and Fluid, School of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
2 Associate Professor, Department of Mechanical Engineering, School of Engineering, Tarbiat Modares University, Tehran, Iran
3 Department of Microbiology, School of Biological Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Background: Mechanical hemolysis plays an important role in development of cardiovascular prostheses, artificial valves, and blood pumps. Considerable research has been conducted to investigate mechanical hemolysis of red blood cells (RBC). Most previous studies have focused on the effects of Reynolds number of blood flow and mean value of turbulent stresses. However, less attention has been paid to the influence of eddy length scale and turbulence intensity.Methods: In this study, a new analytical correlation was proposed in order to predict the mechanical hemolysis due to turbulence effects. The roles of Reynolds number and relative turbulence intensity were clearly demonstrated in the proposed correlation. The good agreement between predicted results and the experimental data showed that the proposed model had good accuracy.Findings: RBCs can tolerate up to 20% of turbulence intensity depending on the value of Reynolds number of the blood flow. In addition, the maximum endurable value of turbulence intensity of a human RBC decreases as Reynolds number of the blood flow increases.Conclusion: For the first time, this paper showed that mechanical hemolysis of RBC can be intensely influenced by the turbulence intensity of blood flow. Therefore, a simple explicit analytical criterion was proposed for prediction of the effects of turbulence intensity on mechanical hemolysis of RBC.

کلیدواژه‌ها [English]

  • Hemolysis
  • Turbulence
  • Red blood cells
  1. Kameneva MV, Burgreen GW, Kono K, Antaki JF, Repko BM, Umezu M. On the mechanical blood trauma: effect of turbulence. Proceedings of the BMES/EMBS Conference; 1999 Oct; Atlanta, USA. p. 772-79.
  2. Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol 2008; 40(4): 257-67.
  3. Sallam A. An investigation of the effect of Reynolds shear stress on red blood cell hemolysis (PhD Thesis). Houston, TX: University of Huston; 1982.
  4. Pinotti M. Is there Correlation between the Turbulent Eddies Size and Mechanical Hemolysis? J Braz Soc Mech Sci 2000; 22(4): 128-36.
  5. Kameneva MV, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO Journal 2004; 50(5): 418-23.
  6. Crowe C, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles. Boca Raton, FL: CRC Press; 1998.
  7. Pilch M, Erdman CA. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow 1987; 13(6): 741-57.
  8. Kolev NI. Fragmentation and coalescence dynamics in multiphase flows. Experimental Thermal and Fluid Science 1993; 6(3): 211-51.
  9. Gelfand BE. Droplet breakup phenomena in flows with velocity lag. Progress in Energy and Combustion Science 1996; 22: 201-12.
  10. Duan RQ, Koshizuka S, Oka Y. Numerical and theoretical investigation of effect of density ratio on the critical Weber number of droplet breakup. Journal of Nuclear Science and Technology 2003; 40(7): 501-8.
  11. Kolmogorov AN. On the disintegration of drops in a turbulent flow. Doklady Akademii Nauk USSR 1949; 66: 825-8.
  12. Hinze JO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AIChE Journal 1955; 1(3): 289-95.
  13. Batchelor GK. The theory of homogeneous turbulence. Cambridge, England: Cambridge University Press; 1953.
  14. Eastwood C, Cartellier A, Lasheras JC. The breakup time of a droplet in fully developed turbulent flow. Proceedings of the 8th European Turbulence Conference; 2000; Barcelona, Spain. p. 573-76.
  15. Andersson R, Andersson B. Modeling the Breakup of Fluid Particles in Turbulent Flows. AIChE Journal 2006; 52(6): 2031-8.
  16. Prevish TD. Secondary droplet breakup in highly turbulent flow fields [PhD Thesis]. Pennsylvania, USA: The Pennsylvania State University; 1998.