تأثیر تمرین هوازی و مصرف امگا 3 بر سطح عامل رشد عصبی هیپوکامپ موش‌های نر سالم و مبتلا به بیماری آلزایمر شده با هوموسیستئین

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه تربیت بدنی، دانشکده ی تربیت بدنی و علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران

2 دانشیار، گروه تربیت بدنی، دانشکده ی تربیت بدنی و علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران

3 استادیار، گروه تربیت بدنی، دانشکده ی تربیت بدنی و علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران

چکیده

مقدمه: مغز، اندامی با سازش پذیری بالا در پاسخ‌های مورفولوژیک، متابولیک و عملکردی به ورزش و تغذیه است. هدف از انجام پژوهش حاضر، بررسی تأثیر مصرف امگا 3 و تمرین هوازی بر سطح عامل رشد عصبی (NGF یا Nerve growth factor) هیپوکامپ در موش‌های نر سالم و مبتلا به بیماری آلزایمر شده با هوموسیستئین بود.روش‌ها: 90 سر موش صحرایی نر نژاد Wistar (با سن 12 هفته و میانگین وزن 60/12 ± 99/219 گرم)، به 9 گروه تقسیم شدند. برای القای بیماری آلزایمر، از تزریق هوموسیستئین با دز 6/0 مولار به درون بطن مغز موش‌ها استفاده شد. تمرین هوازی روی نوار گردان ( 5 روز در هفته، با شدت 55-50 درصد حداکثر اکسیژن مصرفی) و مکمل (روزانه 800 میلی‌گرم به ازای هر کیلوگرم وزن بدن) به مدت 8 هفته اعمال گردید. 72 ساعت پس از آخرین جلسه‌ی مداخله، موش‌ها بیهوش و جراحی شدند و بافت هیپوکامپ جدا شد. داده‌ها با استفاده از آزمون‌ One-way ANOVA و آزمون تعقیبی Tukey تحلیل گردید (050/0 > P).یافته‌ها: در آزمودنی‌های سالم، مصرف امگا 3 باعث افزایش معنی‌دار سطح NGF شد (001/0 = P). انجام تمرین (990/0 = P) و همراه نمودن تمرین و امگا 3 (210/0 = P)، تغییر معنی‌داری در سطح NGF ایجاد نکرد. در آزمودنی‌های مبتلا به بیماری آلزایمر، تمرین هوازی باعث افزایش معنی‌دار سطح NGF گردید (020/0 = P) و مصرف امگا 3 (930/0 = P) و همراه نمودن آن با تمرین (220/0 = P)، تغییر معنی‌داری در سطح NGF ایجاد نکرد.نتیجه‌گیری: به نظر می‌رسد انجام تمرین و مصرف امگا 3 به عنوان مداخلات درمانی در راهبردهای پیش‌گیری و درمان بیماری آلزایمر، به صورت‌های مختلفی تأثیر می‌گذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Aerobic Training and Omega-3 Intake on Nerve Growth Factor in the Hippocampus of Healthy Male Rats and Rats with Homocysteine Induced Alzheimer's Model

نویسندگان [English]

  • Raziyeh Norouzi-Kakhki 1
  • Marziyeh Saghebjoo 2
  • Ali Seghatoleslami 3
1 MSc Student, Department of Physical Education, School of Physical Education and Sport Sciences, University of Birjand, Birjand, Iran
2 Associate Professor, Department of Physical Education, School of Physical Education and Sport Sciences, University of Birjand, Birjand, Iran
3 Assistant Professor, Department of Physical Education, School of Physical Education and Sport Sciences, University of Birjand, Birjand, Iran
چکیده [English]

Background: The brain is organ that has high adaptability in response to morphological, metabolic and functional to exercise and nutrition. The aim of this study was to examine the effect of omega-3 intake and aerobic training on nerve growth factor (NGF) in the hippocampus of healthy male rats and rats with homocysteine induced Alzheimer's model.Methods: Ninety male Wistar rats (12 weeks old and mean weight 219.99 ± 12.60 g), were divided into 9 groups. To induce Alzheimer's disease, homocysteine was infused into the rats cerebroventricule at a dose of 0.6M were used. Aerobic training on a treadmill (5 days per week, with 50 to 55% of maximal oxygen consumption) were carried out and supplemented groups during the 8 weeks, daily 800 mg per kg body weight were administered omega-3 supplements. 72 hours after the last intervention session, the rats anesthetized, and surgically removed the hippocampus tissue. Data analysis using one way ANOVA and Tukey tests were performed (P < 0.05).Findings: In healthy subjects, intake of omega-3 caused a significant increase in NGF level (P = 0.001). Exercise training and absence of omega-3 along with exercise training, had no significant effect on NGF levels (P = 0.990 and P = 0.210 respectively). In subjects with Alzheimer's disease, aerobic training caused a significant increase in NGF levels (P = 0.020), and omega-3 intake with its combination with exercise training, had no significant change in the level of NGF (P = 0.930 and P = 0.220 respectively).Conclusion: It seems that exercise training and omega-3 intake in the strategy of prevention and treatment of Alzheimer's disease can affect in many different forms.

کلیدواژه‌ها [English]

  • Aerobic training
  • Omega 3
  • Alzheimer
  • Nerve growth factor
  1. Beckett MW, Ardern CI, Rotondi MA. A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults. BMC Geriatr 2015; 15: 9.
  2. Leyhe T, Andreasen N, Simeoni M, Reich A, von Arnim CA, Tong X, et al. Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer's disease: a phase I study. Alzheimers Res Ther 2014; 6(2): 19.
  3. Platenik J, Fisar Z, Buchal R, Jirak R, Kitzlerova E, Zverova M, et al. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer's disease and depression. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50: 83-93.
  4. Faria MC, Goncalves GS, Rocha NP, Moraes EN, Bicalho MA, Gualberto Cintra MT, et al. Increased plasma levels of BDNF and inflammatory markers in Alzheimer's disease. J Psychiatr Res 2014; 53: 166-72.
  5. Taepavarapruk P, Song C. Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1beta administrations: effects of omega-3 fatty acid EPA treatment. J Neurochem 2010; 112(4): 1054-64.
  6. Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35(7): 338-48.
  7. Dakhili A, Gharakhanlou R, Movaheddin M, Khazani A, Keshavarz M. The effect of 6 weeks endurance training on gene expression of nerve growth factor in sensory spinal cord of rats with diabetic neuropathy. Iran J Diabetes Lipid Disord 2014; 13 (3): 263-71. [In Persian].
  8. Chiu CC, Su KP, Cheng TC, Liu HC, Chang CJ, Dewey ME, et al. The effects of omega-3 fatty acids monotherapy in Alzheimer's disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(6): 1538-44.
  9. Vosadi E, Ravasi A A, Choobine S, Barzegar H, Borjianfard M. Effect of endurance training and omega-3 supplementation in brain-derived neurotrophic factor (BDNF) in male adult rat hippocampus. Razi J Med Sci 2013; 20 (111):50-7. [In Persian].
  10. Farjah GH, Ahi M, Atlasi MA, Naeimi MS. An ultra structure study on the effects of nerve growth factor and insulin-like growth factor on rat peripheralnerve regeneration. J Ilam Univ Med Sci 2007; 15(3): 33-40. [In Persian].
  11. Hosseinzadeh S, Dabidi R, V, Pourasghar M. Effects of intermittent aerobic training on passive avoidance test (shuttle box) and stress markers in the dorsal hippocampus of wistar rats exposed to administration of homocysteine. Iran J Psychiatry Behav Sci 2013; 7(1): 37-44.
  12. Erickson KI, Gildengers AG, Butters MA. Physical activity and brain plasticity in late adulthood. Dialogues Clin Neurosci 2013; 15(1): 99-108.
  13. Shah T, Verdile G, Sohrabi H, Campbell A, Putland E, Cheetham C, et al. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl Psychiatry 2014; 4: e487.
  14. Paillard T, Rolland Y, de Souto BP. Protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: A Narrative Review. J Clin Neurol 2015; 11(3): 212-9.
  15. Wiktorowska-Owczarek A, Berezinska M, Nowak JZ. PUFAs: Structures, Metabolism and Functions. Adv Clin Exp Med 2015; 24(6): 931-41.
  16. Su HM. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 2010; 21(5): 364-73.
  17. Thomas J, Thomas CJ, Radcliffe J, Itsiopoulos C. Omega-3 fatty acids in early prevention of inflammatory neurodegenerative disease: a focus on Alzheimer's disease. Biomed Res Int 2015; 2015: 172801.
  18. Gamoh S, Hashimoto M, Sugioka K, Shahdat HM, Hata N, Misawa Y, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 1999; 93(1): 237-41.
  19. Leckie RL, Manuck SB, Bhattacharjee N, Muldoon MF, Flory JM, Erickson KI. Omega-3 fatty acids moderate effects of physical activity on cognitive function. Neuropsychologia 2014; 59: 103-11.
  20. Mowla A. Pharmacological treatment for Alzheimer's disease: current approaches and future strategies. Iran South Med J 2010; 13(4): 287-92. [In Persian].
  21. Ghanbari-Niaki A, Hosseinpour F, Fathi R, Daneshpouri M, Akhavan Niaki H, Zarkesh M et al. Effect of 8 weeks endurance training with two different durations on plasma HDL and ghrelin in male rats. Iran J Endocrinol Metab 2011; 2(13): 202-208. [In Persian].
  22. Gama CS, Canever L, Panizzutti B, Gubert C, Stertz L, Massuda R, et al. Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia. Schizophr Res 2012; 141(2-3): 162-7.
  23. Shayan A, Bagherzadeh F, Shahbazi M, Chobineh S. The effect of two types of exercise (endurance and resistance) on attention and brain derived neurotropic factor levels in sedentary students. Journal of Development and Motor Learning 2014; 6(4): 433-52. [In Persian].
  24. Arcoverde C, Deslandes A, Moraes H, Almeida C, Araujo NB, Vasques PE, et al. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study. Arq Neuropsiquiatr 2014; 72(3): 190-6.
  25. Ang ET, Dawe GS, Wong PT, Moochhala S, Ng YK. Alterations in spatial learning and memory after forced exercise. Brain Res 2006; 1113(1): 186-93.
  26. Yu F, Bronas UG, Konety S, Nelson NW, Dysken M, Jack C, Jr., et al. Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer's disease: study protocol of a randomized controlled trial (The FIT-AD trial). Trials 2014; 15: 394.
  27. Jicha GA, Markesbery WR. Omega-3 fatty acids: potential role in the management of early Alzheimer's disease. Clin Interv Aging 2010; 5: 45-61.
  28. Jose GR. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Sao Paulo Med J 2012; 130(6): 419.
  29. Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y, et al. Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 2006; 56(2): 159-64.
  30. Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res 2010; 1341: 32-40.