نقش سلول‌های ستیغ عصبی در تکامل چشم و گوش

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناس ارشد، گروه مهندسی بافت، دانشکده‌ی علوم پایه، دانشگاه آزاد اسلامی، واحد نجف‌آباد، اصفهان، ایران

2 استادیار، گروه علوم تشریحی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، ایران

چکیده

سلول‌های ستیغ عصبی، سلول‌های بنیادی چند ظرفیتی، مهاجر و مختص مهره‌داران می‌باشند که نقش حیاتی در تکامل بسیاری از اندام‌های جنین دارند. این سلول‌ها از بخش پشتی لوله‌ی عصبی در حال تشکیل جدا شده، به نواحی مختلفی از بدن مهاجرت و در تشکیل ساختارهای مختلف شرکت می‌کنند. در مغز قدامی مهره‌داران، جمعیت مشخصی از سلول‌های ستیغ عصبی به قوس‌های حلقی و مزانشیم اطراف چشمی مهاجرت کرده، در تکوین گوش و چشم نقش مهمی را ایفا می‌کنند. دانستن نقش سلول‌های ستیغ عصبی در شکل‌گیری این اعضای حسی مهم در هر دو زمینه‌ی دانش علوم پایه و بالینی مفید است. با توجه به این که نقش سلول‌های ستیغ عصبی در تکوین گوش و چشم گردآوری نشده بود، هدف این مقاله‌ی مروری، جمع‌آوری مطالعاتی بود که نقش این سلول‌ها در تکوین ساختارهای گوش و چشم را نشان دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Neural Crest Cells in Development and Formation of Ear and Eye

نویسندگان [English]

  • Shahin Rouhi 1
  • Hossein Salehi 2
  • Noushin Amirpour 2
1 Department of Tissue Engineering, School of Basic Sciences, Najafabad Branch, Islamic Azad University, Isfahan, Iran
2 Assistant Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Neural crest cells, as vertebrate-specific multipotent migratory stem cells, play a vital role in development of many embryonic organs. These cells dispart from the dorsal part of developing neural tube and then, migrate to different parts of the body, contributing to the formation of verity structures. In the head region of vertebrate, a population of neural crest cells migrates to the pharyngeal arch and periocular mesenchyme and makes critical contribution to the developing ear and eye. Understanding the contribution of neural crest cells in formation of these important sense organs is relevant both for basic science knowledge and human clinical concern. As there was no comprehensive review on neural crest cells function in ear and eye developing, we aimed to review the studies on the role of neural crest cells in development and formation of ear and eye.

کلیدواژه‌ها [English]

  • Neural crest cells
  • Ear
  • Eye
  • Development
  1. Sadler TW. Langman's medical embryology. 12th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2011. p. 93, 407-24.
  2. Mayor R, Theveneau E. The neural crest. Development 2013; 140(11): 2247-51.
  3. Sperber GH. Book review: Neural crest cells: evolution, development and disease. Br Dent J 2014; 216(10): 551.
  4. Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 1983; 96(1): 144-65.
  5. Beauchamp GR, Knepper PA. Role of the neural crest in anterior segment development and disease. J Pediatr Ophthalmol Strabismus 1984; 21(6): 209-14.
  6. Trainor P. Neural crest cells: Evolution, development and disease. 1st ed. London, UK: Academic Press; 2013.
  7. D'Amico-Martel A, Noden DM. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 1983; 166(4): 445-68.
  8. Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, et al. Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10. J Neurochem 2010; 114(6): 1827-39.
  9. Hall JE. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia, PA: Saunders; 2010. p. 637-8.
  10. Mescher A. Junqueira's basic histology: Text and atlas. 13th ed. New York, NY: McGraw-Hill Education / Medical; 2013. p. 498-510.
  11. Delprat B, Irving S. Composition of the cochlear fluids [Online]. [cited 2014 Mar 3]; Available from: URL: http://www.cochlea.eu/en/cochlea/cochlear-fluids.
  12. Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 1989; 107(3): 453-63.
  13. Epstein DJ, Vekemans M, Gros P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991; 67(4): 767-74.
  14. Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP, Sanchez-Garcia I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002; 11(25): 3231-6.
  15. Hoth CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 1993; 52(3): 455-62.
  16. Morell R, Friedman TB, Moeljopawiro S, Hartono, Soewito, Asher JH. A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine Pax-3 is responsible for Waardenburg syndrome type 1 in an Indonesian family. Hum Mol Genet 1992; 1(4): 243-7.
  17. Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP. A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol Chem 1993; 268(28): 20687-90.
  18. Amiel J, Watkin PM, Tassabehji M, Read AP, Winter RM. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol 1998; 7(1): 17-20.
  19. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993; 74(2): 395-404.
  20. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998; 18(1): 60-4.
  21. Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996; 12(4): 442-4.
  22. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 1994; 79(7): 1277-85.
  23. Matsushima Y, Shinkai Y, Kobayashi Y, Sakamoto M, Kunieda T, Tachibana M. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mamm Genome 2002; 13(1): 30-5.
  24. Giebel LB, Spritz RA. Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism. Proc Natl Acad Sci USA 1991; 88(19): 8696-9.
  25. Pingault V, Ente D, Dastot-Le MF, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31(4): 391-406.
  26. Read AP, Newton VE. Waardenburg syndrome. J Med Genet 1997; 34(8): 656-65.
  27. Black FO, Pesznecker SC, Allen K, Gianna C. A vestibular phenotype for Waardenburg syndrome? Otol Neurotol 2001; 22(2): 188-94.
  28. Kaneaster SK, Saunders JE. Congenital vestibular disorders. In: Weber PC, editor. Vertigo and disequilibrium: a practical guide to diagnosis and management. New Yok, NY: Thieme Medical Publisher; 2008. p. 119-24.
  29. Price ER, Fisher DE. Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network. Neuron 2001; 30(1): 15-8.
  30. Gilbert SF. Developmental biology. 6th ed. Sunderland, MA: Sinauer Associates; 2000. p. 383-5.
  31. Amirpour N, Karamali F, Rabiee F, Rezaei L, Esfandiari E, Razavi S, et al. Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev 2012; 21(1): 42-53.
  32. Amirpour N, Karamali F, Razavi S, Esfandiari E, Nasr-Esfahani MH. A proper protocol for isolation of retinal pigment epithelium from rabbit eyes. Adv Biomed Res 2014; 3: 4.
  33. Amirpour N, Nasr-Esfahani MH, Esfandiari E, Razavi S, Karamali F. Comparing three methods of co-culture of retinal pigment epithelium with progenitor cells derived human embryonic stem cells. Int J Prev Med 2013; 4(11): 1243-50.
  34. Chow RL, Lang RA. Early eye development in vertebrates. Annu Rev Cell Dev Biol 2001; 17: 255-96.
  35. Creuzet S, Vincent C, Couly G. Neural crest derivatives in ocular and periocular structures. Int J Dev Biol 2005; 49(2-3): 161-71.
  36. Fuhrmann S, Levine EM, Reh TA. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 2000; 127(21): 4599-609.
  37. Fitch JM, Birk DE, Linsenmayer C, Linsenmayer TF. Stromal assemblies containing collagen types IV and VI and fibronectin in the developing embryonic avian cornea. Dev Biol 1991; 144(2): 379-91.
  38. Hirsch M, Noske W, Prenant G, Renard G. Fine structure of the developing avian corneal stroma as revealed by quick-freeze, deep-etch electron microscopy. Exp Eye Res 1999; 69(3): 267-77.
  39. Zak NB, Linsenmayer TF. Analysis of corneal development with monoclonal antibodies. I. Differentiation in isolated corneas. Dev Biol 1985; 108(2): 443-54.
  40. Lwigale PY, Cressy PA, Bronner-Fraser M. Corneal keratocytes retain neural crest progenitor cell properties. Dev Biol 2005; 288(1): 284-93.
  41. Bahn CF, Falls HF, Varley GA, Meyer RF, Edelhauser HF, Bourne WM. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology 1984; 91(6): 558-63.
  42. Johnston MC. The neural crest in abnormalities of the face and brain. Birth Defects Orig Artic Ser 1975; 11(7): 1-18.
  43. Oelberg DG, Dominguez R, Hebert AA. Neurocristopathy syndrome: review of four cases. Pediatr Dermatol 1990; 7(2): 87-92.
  44. Kenyon KR. Mesenchymal dysgenesis in Peter's anomaly, sclerocornea and congenital endothelial dystrophy. Exp Eye Res 1975; 21(2): 125-42.
  45. Waring GO, III, Rodrigues MM, Laibson PR. Anterior chamber cleavage syndrome. A stepladder classification. Surv Ophthalmol 1975; 20(1): 3-27.
  46. Campbell DG, Shields MB, Smith TR. The corneal endothelium and the spectrum of essential iris atrophy. Am J Ophthalmol 1978; 86(3): 317-24.
  47. Shields MB. Progressive essential iris atrophy, Chandler's syndrome, and the iris nevus (Cogan-Reese) syndrome: a spectrum of disease. Surv Ophthalmol 1979; 24(1): 3-20.
  48. Eagle RC, Jr., Font RL, Yanoff M, Fine BS. Proliferative endotheliopathy with iris abnormalities. The iridocorneal endothelial syndrome. Arch Ophthalmol 1979; 97(11): 2104-11.
  49. Ittner LM, Wurdak H, Schwerdtfeger K, Kunz T, Ille F, Leveen P, et al. Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. J Biol 2005; 4(3): 11.
  50. Gage PJ, Rhoades W, Prucka SK, Hjalt T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 2005; 46(11): 4200-8.
  51. Foster CS, Sainz de la Maza M. The sclera. New York, NY: Springer; 2013.
  52. Lee VM, Sechrist JW, Luetolf S, Bronner-Fraser M. Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Dev Biol 2003; 263(2): 176-90.
  53. Rubenstein J, Rakic P. Patterning and cell type specification in the developing CNS and PNS: Comprehensive developmental neuroscience. 1st ed. Philadelphia, PA: Elsevier; 2013. p. 992.