تأثیر تمرین تناوبی شدید و عسل آویشن بر تکثیر و تمایز سلول‌های قلبی رت‌های نر مبتلا به دیابت نوع دو

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه تخصصی تربیت بدنی و علوم ورزشی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، گروه تخصصی تربیت بدنی و علوم ورزشی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

مقدمه: ورزش و آنتی‌اکسیدان‌ها، به عنوان یک درمان محافظتی در برابر خطر دیابت شناخته می‌شوند. هدف از پژوهش حاضر، بررسی تأثیر تمرین تناوبی شدید و عسل آویشن بر تکثیر و تمایز سلول‌های بافت قلب رت‌های نر مبتلا به دیابت نوع دو بود.
روش‌ها: این مطالعه‌ی تجربی، بر روی 36 رت مبتلا به دیابت انجام شد. رت‌ها به طور تصادفی در چهار گروه شاهد مبتلا به دیابت (8 سر)، تمرین تناوبی (10 سر)، عسل آویشن (8 سر)، تمرین تناوبی‌ و مصرف عسل آویشن (10 سر) تقسیم شدند. مداخله‌ی تمرینی به ‌صورت 8 هفته HIIT، شامل 2 تا 8 تناوب دو دقیقه‌ای دویدن با شدت 80 تا 90 درصد max2VO و استراحت یک دقیقه‌ای با شدت 50 تا 56 درصد max2VO، به مدت 5 جلسه در هفته اجرا می‌شود. علاوه بر این، 3 گرم بر کیلوگرم عسل آویشن، 5 روز در هفته در گروه‌های مکمل مصرف شد. بیان ژن‌های Nkx2.5، Tbx5 و Gata4 توسط real-time RT-PCR ارزیابی گردید. جهت بررسی تفاوت بین گروه‌ها از آزمون ANOVA و آزمون تعقیبی LSD استفاده شد.
یافته‌ها: نتایج نشان داد که بیان ژن Tbx5، Gata4 و Nkx2.5 در گروه HIIT نسبت به گروه شاهد، افزایش معنی‌داری دارد اما این یافته‌ها در شاخص‌های Tbx5 و Nkx2.5 در گروه عسل تکرار نشد (05/0 < P).
نتیجه‌گیری: HIIT با افزایش بیان ژن‌های Nkx2.5، Tbx5 و Gata4 سبب تکثیر و تمایز سلول قلب رت‌های مبتلا به دیابت می‌شد در حالی که تأثیر عسل آویشن و تعامل آن با تمرین، نمی‌توانست مزایای مشابهی در رت‌های مبتلا به دیابت داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Interval Exercise and Thyme Honey on Cardiac Cells Proliferation and Differentiation of Type 2 Diabetic Male Rats

نویسندگان [English]

  • Mahdieh Kousha 1
  • Hossein Abednatanzi 2
  • Mandana Gholami 3
  • Farshad Ghazalian 3
1 PhD Student, Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Background: Exercise and antioxidants are well known for the protection against the risk of diabetes. Therefore, the purpose of the current study was to investigate the effects of intermittent exercise and thyme honey on the proliferation and differentiation of cardiac cells in male rats with type 2 diabetes.
Methods: This experimental study was performed on 36 male diabetic rats which were randomly divided into four groups: control (n = 8), HIIT (n = 10), thyme honey (n = 8) and HIIT*thyme honey (n = 10) groups. The HIIT intervention of 8 weeks, including 2 to 8 of intrmittent running for 2 mins at 80-90% VO2max and 1 min at 50-56% VO2max, was performed for 5 sessions per week. Additionally, 3 g/kg thyme honey was fed, 5 days/week, in supplement groups. Both Nkx2.5 and Tbx5 genes expression in heart tissue was measured by real-time RT-PCR. To evaluate the differences between the groups, ANOVA and LSD post hoc test were used with the significance level of P ≤ 0.05.
Findings: Analysis revealed that expression of Nkx2.5, Gata4 and Tbx5 gene were significantly higher in HIIT compared with the control group whereas these findings were not repeated in Tbx5 and Nkx2.5 indices of the honey group (P > 0.05).
Conclusion: The HIIT is associated with increased expression of Nkx2.5, Tbx5 and Gata4 (1)genes in heart tissue of diabetic rats, while thyme honey did not have similar benefits in diabetic rats.

کلیدواژه‌ها [English]

  • High-Intensity Intermittent Training
  • Diabetes Mellitus
  • Honey
  • Antioxidants
  • Nkx2.5
  • Tbx5
  • Gata4
  1. Johansson I. Diabetes mellitus and heart failure: registry based studies on risk factors, prognosis and impact of treatment. [Online]. 2017; Avilable from: URL: https://openarchive.ki.se/xmlui/bitstream/handle/10616/45540/Spikblad_Isabelle_Johansson.pdf?sequence=2&isAllowed=y
  2. Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, et al. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20(1): 55.
  3. Hemati Nafar M, Gaeini A, Gaeini AA, Choobineh S, Karimzade F. The effect of exercise training intensity on cardiac regeneration capacity in rats with myocardial infarction. J Sport Biosciences 2019; 11(1): 17-34. [In Persian].
  4. Meyfour A, Pahlavan S, Mirzaei M, Krijgsveld J, Baharvand H, Hosseini Salekdeh G. The quest of cell surface markers for stem cell therapy. Cell Mol Life Sci 2020; 78(2): 469-95.
  5. Ma J, Huang Y, Jiang P, Liu Z, Luo Q, Zhong K, et al. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos.
    Aquat Toxicol 2021; 237: 105870.
  6. Nomura S, Satoh M, Fujita T, Higo T, Sumida T, Ko T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun 2018; 9(1): 4435.
  7. Forough R, Scarcello C, Perkins M. Cardiac biomarkers: a focus on cardiac regeneration. J Tehran Heart Cent 2011; 6(4): 179-86.
  8. Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, et al. Physical exercise and cardiac repair: The potential role of nitric oxide in boosting stem cell regenerative biology. Antioxidants (Basel) 2021; 10(7): 1002.
  9. Khakdan S, Delfan M, Heydarpour Meymeh M, Kazerouni F, Ghaedi H, Shanaki M, et al. High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats Arch Physiol Biochem 2020; 126(3): 250-7.
  10. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, de Prado AP, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol 2011; 58(9): 977-86.
  11. Bo B, Zhou Y, Zheng Q, Wang G, Zhou K, Wei J. The molecular mechanisms associated with aerobic exercise-induced cardiac regeneration. Biomolecules 2021; 11(1): 19.
  12. Kamkar A, Khodabakhshiyan S. Determination of the total phenolic, flavonoid and antioxidant activity of Sabalan Honey. J Vet Res 2017; 72(1): 53-61.
  13. Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127: 110234.
  14. Zhu H, Zhang W, Zhao Y, Shu X, Wang W, Wang D, et al. GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions. Mol Neurodegener 2018; 13(1): 1-7.
  15. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F. A review on the protective effects of honey against metabolic syndrome. Nutrients 2018; 10(8): 1009.
  16. Rodrigues B, Figueroa DM, Mostarda CT, Heeren MV, Irigoyen MC, de Angelis K. Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovascular Diabetology 2007; 6: 38.
  17. Yeylaghi Ashrafi MR, Abednatanzi H, Ghazalian F. The effect of eight weeks of high intensity interval training and n-chromosomal royal jelly on G6Pase gene expression in hepatocytes, glucose levels and insulin resistance in type 2 diabetic rats. Razi J Med Sci 2020; 27(10): 135-50. [In Persian].
  18. Xiao J, Xu T, Li J, Lv D, Chen P, Zhou Q, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. Int J Clin Exp Pathol 2014; 7(2): 663-9.
  19. Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: signaling pathways. Oncotarget 2015; 6(25): 20773-84.
  20. Zhou X, Xu MM, Bryant JL, Ma J, Xu X. Exercise-induced myokine FNDC5/irisin functions in cardiovascular protection and intracerebral retrieval of synaptic plasticity. Cell Biosci 2019; 9(1): 32.
  21. Vosadi E, Borjianfard M. The effect of different exercise intensities on T-Box transcription factor 5 gene expression and hypertrophy in the heart muscle of male rats. J Inflamm Dis 2020; 24(3): 202-11.
  22. Eskandari A, Soori R, Choobineh S, Mazaheri Tirani Z. Exercise promotes heart regeneration in aged rats by increasing regenerative factors in myocardial tissue. Physiol Int 2020; 107(1): 166-76.
  23. Chen WC, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv 2016; 2(11): e1600844.
  24. Rezaei S, Matinhomaee H, Azarbayjani MA, Farzanegi P. The effect of intense and moderate interval aerobic exercise and curcumin consumption on the gene expression of c-Kit in stem cells of old rats heart. J Fasa Univ Med Sci 2017; 7(1): 68-76. [In Persian].
  25. Kulikova TG, Stepanova OV, Voronova AD, Valikhov MP, Sirotkin VN, Zhirov IV, et al. Pathological remodeling of the myocardium in chronic heart failure: role of PGC-1α. Bull Exp Biol Med 2018 164(6): 794-7.
  26. Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 2016; 594(18): 5135-47.
  27. Najafi M, Shaseb E, Ghaffary S, Fakhrju A, Eteraf Oskouei T. Effects of chronic oral administration of natural honey on ischemia/reperfusion-induced arrhythmias in isolated rat heart. Iran J Basic Med Sci 2011; 14(1): 75-81.
  28. Huang JJ, Xie Y, Li H, Zhang XX, Huang Q, Zhu Y, et al. YQWY decoction reverses cardiac hypertrophy induced by TAC through inhibiting GATA4 phosphorylation and MAPKs. Chin J Nat Med 2019; 17(10): 746-55.
  29. Bheereddy P, Yerra VG, Kalvala AK, Sherkhane B, Kumar A. SIRT1 activation by polydatin alleviates oxidative damage and elevates mitochondrial biogenesis in experimental diabetic neuropathy. Cell Mol Neurobiol 2021; 41(7): 1563-77.