استخراج اتوماتیک مرز اجسام لیشمن موجود در نمونه‌های مغز استخوان بیماران مبتلا به لیشمانیازیس احشایی

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه بیوالکتریک، دانشکده‌ی فناوری‌های نوین علوم پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، گروه بیوالکتریک، دانشکده‌ی فناوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، گروه آسیب‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: تشخیص خودکار مرز در تکنیک‌های پردازش تصویر، یکی از مهم ترین مراحل تشخیص بیماری توسط کامپیوتر می‌باشد که دقت و صحت مراحل بعدی به طور حساسی به آن وابسته است. پس از رنگ‌آمیزی تصاویر میکروسکوپی میزان آرتیفکت‌های تصویر افزایش می‌یابد. از این رو، یافتن مرز دقیق اشیا به منظور استخراج ویژگی دقیق بسیار مهم می‌باشد.روش‌ها: در این مقاله، با پردازش تصاویر میکروسکوپی گرفته شده از نمونه‌های حاصل از آسپیراسیون مغز استخوان افراد مبتلا به بیماری لیشمانیازیس احشایی، به کمک روش‌های آستانه‌گذاری اوتسو (Otsu)، ساوولا (Sauvola) و k-میانگین، جسم لیشمن به صورت خودکار بخش‌بندی شد. به منظور جمع‌آوری مجموعه‌ی تصاویر، دوربین عکس‌برداری دیجیتال 9Sony DSC-H متصل به میکروسکوپ نوری 200RF40Olympus-CH استفاده گردید. روش‌های پیشنهادی بر روی 20 تصویر میکروسکوپی آزمایش گردید. جهت شناسایی اجسام لیشمن از بین موارد استخراج شده، برای هر کاندید ویژگی‌های هندسی مانند کشیدگی، نرخ مساحت، گردی، استحکام و ویژگی‌های بافتی مانند میانگین، واریانس، همواری، ممان سوم، یکنواختی و آنتروپی محاسبه شد. سپس با استفاده از طبقه‌بند شبکه‌ی عصبی جلوسو، اجسام موجود به دو گروه سالم و معیوب طبقه‌بندی شدند.یافته‌ها: در هر روش، به منظور یافتن بهترین حالت اجرایی ممکن، مقایسه‌ای صورت گرفت و مشخص گردید که استفاده از سطح پنج برای روش اوتسو، مقدار آستانه 1/0 برای روش ساوولا و تعداد خوشه‌ی پنج برای روش k-میانگین، کمترین میزان خطای استخراج مرز را به دنبال دارند.نتیجه‌گیری: نتایج به دست آمده پس از مقایسه‌ی دستاوردها با نظر پزشک متخصص، نشان داد که روش ساوولا دارای کمترین خطای استخراج مرز و روش اوتسو بهترین روش برای شناسایی جسم لیشمن می‌باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Automatic Boundary Extraction of Leishman Bodies in Bone Marrow Samples from Patients with Visceral Leishmaniasis

نویسندگان [English]

  • Maria Farahi 1
  • Hossein Rabbani 2
  • Ardeshir Talebi 3
1 MSc Student, Department of Bioelectrical Engineering, School of Advanced Medical Technology AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Department of Bioelectrical Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: According to the progress of microscopic imaging technology and suitable image processing techniques in the past decade, there is a tendency to use computer for automatic diagnosis of microscopic diseases. Automatic border detection is one of the most important steps in computer diagnosis that accuracy and specificity of the subsequent steps crucially depends on it. Microscopic images are colored to be seen more accurate and easier; after coloring, the image artifacts increases, so the boundary detection of objects is very important in order to find the exact feature extraction.Methods: In this study, leishman bodies existed in microscopic images taken from bone marrow samples of patients with visceral leishmaniasis underwent automatic-segmentatio using Otsu and Savoulla thresholding methods besides K-means clustering method. For data acquisition, a digital camera (Sony DSC-H9) coupled on an optical microscope (Olampus-CH40RF200) were used. Proposed method was tested on 20 images. For automatic diagnosis of the leishman bodies from all found objects, some geometric features like eccentricity, area ratio, roundness and solidity and some texture features like mean, variance, smoothness, third moment, uniformity and entropy were extracted. Found objects were classified into healthy and non-healthy groups using Feed-Forward Neural Network classifier.Findings: To find the best mode for each method, a comparison were made and determined that using stage 5 for Otsu, threshold 0.1 for Sauvola and 5 clusters for k-means had minimum automatic boundary extraction error.Conclusion: After compartment of obtained result with specialist, we found that Sauvolla method had minimum error of border detection, and Otsu method was more accurate for automatic detection of leishman bodies.

کلیدواژه‌ها [English]

  • Automatic disease diagnosis
  • Visceral leishmaniasis
  • Leishman body
  • Segmentation
  • Border detection
  1. Garcia LS. Diagnostic medical parasitology. 5th ed. Washington, DC: ASM Press; 2007.
  2. Markle WH, Makhoul K. Cutaneous leishmaniasis: recognition and treatment. Am Fam Physician 2004; 69(6): 1455-60.
  3. World Health Organization. Strategic Direction for Research: Leishmaniasis [Online]. [cited 2002 Feb]; Available from: URL: www.who.int/tdr
  4. Talari SA, Sadr F. Treatment of cutaneous Leishmaniasis: effectiveness, and adverse effects of the drugs. Feyz 2001; 5(1): 85-94. [In Persian].
  5. Pagadala P. Tumor border detection in epiluminescence microscopy images [Thesis]. Columbia, MO: Department of Electrical and Computer Engineering, University of Missouri 1998.
  6. Schmid P. Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans Med Imaging 1999; 18(2): 164-71.
  7. Erkol B, Moss RH, Stanley RJ, Stoecker WV, Hvatum E. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res Technol 2005; 11(1): 17-26.
  8. Cucchiara R, Grana C, Seidenari S, Pellacani G. Exploiting color and topological features for region segmentation with recursive fuzzy C-means. Machine Graphics & Vision International Journal 2002; 11(2-3): 169-82.
  9. Wan Y, Shi D. Joint exact histogram specification and image enhancement through the wavelet transform. IEEE Trans Image Process 2007; 16(9): 2245-50.
  10. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Systems, Man, and Cybernetics Society 1979; 9(1): 62-6.
  11. Sauvola J, Pietikäinen M. Adaptive document image binarization. Pattern Recognition 1999; 33(2000): 225-36.
  12. Alpaydin E. Introduction to machine learning. Cambridge MA: The MIT Press; 2004.
  13. Gonzalez R, Woods R, Eddins S. Digital image processing using MATLAB. 2nd ed. Knoxville, TN: Gatesmark Publishing; 2009.
  14. Celebi ME, Kingravi HA, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH, et al. Border detection in dermoscopy images using statistical region merging. Skin Res Technol 2008; 14(3): 347-53.
  15. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 2003; 56(11): 1129-35.