تأثیر تمرین تناوبی با شدت بالا و متوسط بر پری‌لیپین 3 بافت چربی احشایی و مقاومت به انسولین رت‌های نر مبتلا به دیابت نوع دو

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 استاد، گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

3 استادیار، گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

مقدمه: واکنش پروتئین‌های قطره‌ی چربی به تمرین تناوبی، ممکن است منجر به ایجاد شرایطی شود که تشخیص مکانیسم زیربنایی تمرین ورزشی و دیابت نوع دو را فراهم نماید. هدف از انجام پژوهش حاضر، بررسی تأثیر دو شدت متفاوت تمرین تناوبی بر پری‌لیپین 3 (Perilipin-3 یا PLIN3) بافت چرب احشایی و مقاومت به انسولین رت‌های نر بود.روش‌ها: 32 سر موش صحرایی نر نژاد ویستار در دو گروه سالم و مبتلا به دیابت قرار گرفتند. سپس موش‌های مبتلا به دیابت به سه زیرگروه (شاهد مبتلا به دیابت، تمرین تناوبی با شدت بالا و شدت متوسط) و یک گروه شاهد سالم تقسیم شدند تا مطالعه بر روی چهار گروه (هر گروه 8 سر) انجام شود. تمرین در گروه متوسط با 70-65 درصد و در گروه شدت بالا با 90-85 درصد حداکثر اکسیژن مصرفی در طول هشت هفته انجام شد. 48 ساعت پس از آخرین نوبت تمرین، موش‌ها با تزریق درون صفاقی (Intraperitoneal یا IP) ترکیبی از کتامین و زایلازین بیهوش شدند و بافت چرب دور روده‌ی آن‌ها برداشته شد. بیان پروتئین PLIN3 با استفاده از تکنیک Western blot و مقاومت به انسولین نیز به روش Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) صورت گرفت. در نهایت، ﺩﺍﺩﻩ‌ﻫﺎ ﺑﺎ استفاده از ﺁﺯﻣﻮن One-way ANOVA ﻭ ﺁﺯﻣﻮﻥ تعقیبی Tukey تجزیه و تحلیل گردید.یافته‌ها: نتایج آزمون تعقیبی بیانگر کاهش معنی‌دار PLIN3 و مقاومت به انسولین در گروه تمرین تناوبی با شدت بالا (001/0 = P) و متوسط (001/0 = P) نسبت به گروه شاهد مبتلا به دیابت بود؛ در حالی که تفاوت معنی‌داری بین گروه‌های تمرینی با شدت بالا و متوسط وجود نداشت (328/0 = P).نتیجه‌گیری: تمرینات تناوبی با شدت بالا و متوسط، می‌تواند منجر به بهبود متابولیسم گلوکز و همچنین، تغییرات چشم‌گیر در مقادیر بافتی PLIN3 رت‌های مبتلا به دیابت نوع دو شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of High and Moderate Intensities of Interval Exercise on Perilipin 3 Visceral Adipose Tissue and Insulin Resistance in Type 2 Diabetic Male Rats

نویسندگان [English]

  • Roya Besharati 1
  • Ramin Shabani 2
  • Shahram Gholamrezaei 3
1 PhD Candidate, Department of Physical Education and Sports Science, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Professor, Department of Physical Education and Sports Science, Rasht Branch, Islamic Azad University, Rasht, Iran
3 Assistant Professor, Department of Physical Education and Sports Science, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده [English]

Background: The reaction of fat droplet proteins to interval exercise may lead to the development of conditions that provide an underlying mechanism for exercise and type 2 diabetes. The aim of this study was to investigate the effect of two different intensities of intermittent exercise on perilipin 3 visceral adipose tissue and insulin resistance in male rats.Methods: 32 male Wistar rats were divided into two groups of healthy and diabetic. Then, the diabetic rats were divided into three subgroups of diabetic control and two interval exercise methods (8 in each group). The exercise was performed in the moderate- and high-intensity group with 65-70 and 85-90 percent of the maximum oxygen consumption during eight weeks. 48 hours after the last training session, the mice were anesthetized by intraperitoneal injection of a combination of anesthetic ketamine and xylazine, and adipose tissue around the intestine was removed. The expression level of perilipin 3 protein was assessed by Western blotting, and insulin resistance by the Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. The data were analyzed using one-way analysis of variance and Tukey post hoc tests.Results: The post hoc test showed a significant decrease in perilipin 3 and insulin resistance in the high-intensity (P = 0.001) and moderate-intensity (P = 0.001) interval exercise groups compared to the diabetic control group; while there was no significant difference between high- and moderate-intensity interval exercise groups (P = 0.328).Conclusion: High-intensity and moderate-intensity intermittent exercise can improve glucose metabolism as well as dramatic changes in the tissue levels of perilipin 3 in type 2 diabetic rats.

کلیدواژه‌ها [English]

  • Diabetes Mellitus؛ Perilipin-3؛ High-intensity interval training
  • Insulin resistance
  1. Mackenzie R, Maxwell N, Castle P, Brickley G, Watt P. Acute hypoxia and exercise improve insulin sensitivity (S(I) (2*)) in individuals with type 2 diabetes. Diabetes Metab Res Rev 2011; 27(1): 94-101.
  2. Akbar S, Bellary S, Griffiths HR. Dietary antioxidant interventions in type 2 diabetes patients: a meta-analysis. Diabetes & Vascular Disease 2011; 11(2): 62-8.
  3. Layne AS, Nasrallah S, South MA, Howell ME, McCurry MP, Ramsey MW, et al. Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training. J Clin Endocrinol Metab 2011; 96(6): 1815-26.
  4. Conn VS, Koopman RJ, Ruppar TM, Phillips LJ, Mehr DR, Hafdahl AR. Insulin Sensitivity Following Exercise Interventions: Systematic Review and Meta-Analysis of Outcomes Among Healthy Adults. J Prim Care Community Health 2014; 5(3): 211-22.
  5. Pyorala M, Miettinen H, Laakso M, Pyorala K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation 1998; 98(5): 398-404.
  6. Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 2015; 58(1): 19-30.
  7. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2012; 303(9): E1158-E1165.
  8. Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007; 48(12): 2547-59.
  9. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, et al. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 2012; 61(11): 2679-90.
  10. Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, et al. Preferential utilization of perilipin 2-associated intramuscular triglycerides during 1 h of moderate-intensity endurance-type exercise. Exp Physiol 2012; 97(8): 970-80.
  11. Pourteymour S, Lee S, Langleite TM, Eckardt K, Hjorth M, Bindesboll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015; 3(8).
  12. Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 2013; 591(3): 657-75.
  13. Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab 2004; 287(5): E857-E862.
  14. van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Senden JM, van Baak MA. Effect of exercise training at different intensities on fat metabolism of obese men. J Appl Physiol (1985) 2002; 92(3): 1300-9.
  15. Louche K, Badin PM, Montastier E, Laurens C, Bourlier V, de G, I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 2013; 98(12): 4863-71.
  16. MacPherson RE, Herbst EA, Reynolds EJ, Vandenboom R, Roy BD, Peters SJ. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle. Am J Physiol Regul Integr Comp Physiol 2012; 302(1): R29-R36.
  17. Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 2008; 47(6): 1936-46.
  18. Kim DH, Kim SH, Kim WH, Moon CR. The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-alpha of soleus muscle in obese Zucker rats. J Exerc Nutrition Biochem 2013; 17(4): 199-207.
  19. Bergman BC, Perreault L, Hunerdosse DM, Koehler
  20. MC, Samek AM, Eckel RH. Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. J Appl Physiol (1985) 2010; 108(5): 1134-41.
  21. Rashidi M, Soori R, Choobineh S, Ravasi AA, Baesi K. The effect of an aerobic exercise on mtnr1b gene expression, insulin and glucose levels in pancreas of induced diabetic rat with streptozotocin-nicotinamide. Knowledge Health 2016; 11(3): 40-8. [In Persian].
  22. Sishi B, Loos B, Ellis B, Smith W, du Toit EF, Engelbrecht AM. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol 2011; 96(2): 179-93.
  23. Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, et al. Highintensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol (1985) 2011; 111(5): 1235-41.
  24. Kim ES, Im JA, Kim KC, Park JH, Suh SH, Kang ES, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity (Silver Spring) 2007; 15(12): 3023-30.
  25. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 2012; 37(4): 724-35.
  26. Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, et al. Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 2009; 94(10): 4077-85.
  27. Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S, Kojidani T, et al. Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 2014; 34(14): 2721-31.
  28. Prentki M, Madiraju SR. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes. Mol Cell Endocrinol 2012; 353(1-2): 88-100.
  29. Masuda Y, Itabe H, Odaki M, Hama K, Fujimoto Y, Mori M, et al. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J Lipid Res 2006; 47(1): 87-98.
  30. Pollak NM, Schweiger M, Jaeger D, Kolb D, Kumari M, Schreiber R, et al. Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J Lipid Res 2013; 54(4): 1092-102.
  31. Stuart CA, South MA, Lee ML, McCurry MP, Howell ME, Ramsey MW, et al. Insulin responsiveness in metabolic syndrome after eight weeks of cycle training. Med Sci Sports Exerc 2013; 45(11): 2021-9.
  32. Mann S, Beedie C, Balducci S, Zanuso S, Allgrove J, Bertiato F, et al. Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. Diabetes Metab Res Rev 2014; 30(4): 257-68.