مروری بر اثرات ضد میکروبی نانوذرات و فناوری پلاسمای سرد اتمسفری

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه بیوتکنولوژی، دانشکده‌ی علوم و فناوری‌های همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشجوی کارشناسی ارشد، گروه بیوتکنولوژی، دانشکده‌ی علوم و فناوری‌های همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

مقاله مروری




مقدمه: مقاومت فزاینده و همه‌گیر نسبت به تمام آنتی‌بیوتیک‌های موجود و همچنین ریسک حاصل از کاربرد سایر عوامل میکروب‌کش، تحقیقات را به سمت جستجوی روش‌های ضد‌میکروبی تکمیلی و جدید سوق می‌دهد. اخیراً از پلاسمای سرد (Cold plasma) CP و نانوذرات، جهت گندزدایی میکروبی، ترمیم زخم‌ها و درمان سرطان استفاده می‌شود. هدف از مقاله‌ی حاضر، مروری بر بررسی خواص ضدمیکروبی، انواع روش‌های سنتز و تثبیت نانوذرات به همراه فناوری پلاسمای سرد اتمسفری و چگونگی اثرگذاری آن در غیر فعال‌سازی میکروارگانیسم‌های بیماری‌زا در صنایع غذایی و بخش‌های بالینی است.
روش‌ها: در مطالعه‌ی مروری حاضر، از مقالات منتشر شده از سال 2011 تا 2023 و از پایگاه داده‌های اطلاعاتی علمی مانندGoogle Scholar, PubMed, ScienceDirect  و Scopus استفاده شده است.
یافته‌ها: با اثر عوامل موجود در پلاسمای سرد شامل گونه‌های فعال اکسیژن (Reactive oxygen species) ROS و نیتروژن (Reactive nitrogen speices) RNS، تابشUV و ذرات باردار می توان باکتری ها را غیرفعال کرد که در میان گونه‌های ROS مؤثر، می‌توان به ازون، سوپراکسید، پراکسید و غیره و بین گونه‌های RNS، نیتروژن اتمی و نیتروژن برانگیخته اشاره کرد. همچنین ذرات باردار را می‌توان به صورت مستقیم و غیرمستقیم برای مقاصد ضد میکروبی استفاده نمود.
نتیجه‌گیری: از پلاسمای سرد می‌توان برای بهبود سلامت مواد غذایی، نابودی بیوفیلم‌های باکتریایی، تخریب میکروارگانیسم‌های بیماری‌زا، غیرفعال‌سازی هاگ‌ها و همین‌طور غیرفعال کردن ویروس‌ها بهره برد. با وجود اثرات ذکر شده‌ی پلاسمای سرد و کم بودن آلودگی‌های پس از پردازش آن، باید برای پذیرش کامل آن، رویکردهای زیست‌محیطی و انسانی آن را نیز در کنار اثربخشی آن در نظر گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Antimicrobial Effects of Nanoparticles and Atmospheric Cold Plasma Technology

نویسندگان [English]

  • Bahareh Nowruzi 1
  • Nazanin Hashemi 2
1 Assistant Professor, Department of Biotechnology, School of Converging Sciences and Technologies, Islamic Azad University Science and Research Branch, Tehran, Iran
2 Master Student of Microbial Biotechnology, School of Converging Sciences and Technologies, Islamic Azad University Science and Research Branch, Tehran, Iran
چکیده [English]

Background: Increasing widespread resistance in all available antibiotics, as well as the risk of using other germicidal agents, have prompted research effort to explore additional and new antimicrobial methods. Recently cold plasma (CP) and nanoparticles are used for microbial disinfection, wound healing and cancer treatment. The purpose of this article is to review the antimicrobial properties, various methods of synthesis and stabilization of nanoparticles along with cold plasma technology. Atmospheric and how it affects the inactivation of pathogenic microorganisms in the food industry and clinical departments.
Methods: In the present review, articles published from 2011 to 2023 were used and scientific information databases such as Google Scholar, PubMed, ScienceDirect and Scopus have been used.
Findings: Bacteria can be deactivated by the effect of agents in cold plasma including reactive oxygen species (ROS) and nitrogen (RNS), UV radiation and charged particles. Among the effective species of ROS, ozone, superoxide, peroxide, etc., and among the species of RNS, atomic nitrogen, and excited nitrogen can be mentioned. Also, charged particles can be used directly and indirectly for antimicrobial purposes.
Conclusion: Cold plasma can be used to improve the food safety, eliminate bacterial biofilms, destroy pathogenic microorganisms, inactivate spores, and also deactivate viruses. In spite of the mentioned effects of cold plasma and the low pollution after its processing, for its full acceptance, its environmental and human approaches should be considered along with its effectiveness.

کلیدواژه‌ها [English]

  • Plasma
  • Pharmacology
  • Biofilms
  • Food industry
  1. Aggelopoulos CA. Recent advances of cold plasma technology for water and soil remediation: A critical review. J Chem Eng 2022; 428: 131657.
  2. Gilmore BF, Flynn PB, O’Brien S, Hickok N, Freeman T, Bourke P. Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol 2018; 36(6): 627-38.
  3. Ekezie FGC, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci Technol 2017; 69: 46-58.
  4. Nowruzi B. A review of sunscreens and moisturizers compounds drived from cyanobacteria [in Persian]. JDC 2022; 13(2) :119-132
  5. Šimončicová J, Kryštofová S, Medvecká V, Ďurišová K, Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl
    Microbiol Biotechnol 2019; 103: 5117-29.
  6. Smet C, Govaert M, Kyrylenko A, Easdani M, Walsh JL, Van Impe JF. Inactivation of single strains of Listeria monocytogenes and Salmonella typhimurium planktonic cells biofilms with plasma activated liquids. Front Microbiol 2019; 10: 1539.
  7. Theinkom F, Singer L, Cieplik F, Cantzler S, Weilemann H, Cantzler M, et al. Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 2019; 14(11): e0223925.
  8. Sabzevari O, Khajerahimi A, Kazempoor R, Nowruzi B. A review of the antimicrobial and toxic properties of nanoparticles as a new alternative in the control of aquatic diseases. SAHMJ 2022; 8(1): 78-102.
  9. Najafi Y, Nowruzi B, Sari AH. Review on the combined effect of cold plasma treatment technology and cyanobacteria in heavy metal removal such as Zinc, Calcium, and Magnesium [in Persian]. IJAP 2023; 13(1): 75-116.
  10. Anvar SAA, Nowruzi B, Afshari G. A review of the application of nanoparticles biosynthesized by microalgae and cyanobacteria in medical and veterinary sciences [in Persian]. Iran J Vet Med 2023; 17(1): 1-18.
  11. Mouele ESM, Tijani JO, Badmus KO, Pereao O, Babajide O, Fatoba OO, et al. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J Environ Chem Eng 2021; 9(5): 105758.
  12. Patange A, Boehm D, Ziuzina D, Cullen P, Gilmore B, Bourke P. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int J Food Microbiol 2019; 293: 137-45.
  13. Hosseini Bafghi M, Zarrinfar H, Darroudi M, Zargar M, Nazari R. Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Lett Appl Microbiol 2022; 74(5): 809-19.
  14. Mandal R, Singh A, Singh AP. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci Technol 2018; 80: 93-103.
  15. Niedźwiedź I, Waśko A, Pawłat J, Polak-Berecka M. The state of research on antimicrobial activity of cold plasma. Pol J Microbiol 2019; 68(2): 153-64.
  16. Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, et al. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017; 75: 83-91.
  17. Nowruzi B, Sarvari G, Blanco S. Applications of cyanobacteria in biomedicine. In: Konur O, editor. Handbook of algal science, technology and medicine. Cambridge, Massachusetts: ‎Academic Press; 2020. 441-53.
  18. López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, et al. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front Microbiol 2019; 10: 622.
  19. Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF. Microbiological interactions with cold plasma. J Appl Microbiol 2017; 123(2): 308-24.
  20. Sakudo A, Yagyu Y, Onodera T. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. Int J Mol Sci 2019; 20(20): 5216.
  21. Pankaj SK, Keener KM. Cold plasma: Background, applications and current trends. Curr Opin Food Sci 2017; 16: 49-52.
  22. Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol 2018; 36(6):
    615-26.
  23. Fan J, Wu H, Liu R, Meng L, Sun Y. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environ Sci Pollut Res Int 2021; 28: 2522-48.
  24. Shang K, Jie L, Morent R. Hybrid electric discharge plasma technologies for water decontamination: a short review. Plasma Sci Technol 2019; 21(4): 043001.
  25. Yang C, Guangzhou Q, Tengfei L, Jiang N, Tiecheng W. Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer. Plasma Sci Technol 2018; 20(10): 103001.
  26. Murugesan P, Monica E, Moses J, Anandharamakrishnan C. Water decontamination using non-thermal plasma: Concepts, applications, and prospects. J Environ Chem Eng 2020; 8(5): 104377.
  27. Gururani P, Bhatnagar P, Bisht B, Kumar V, Joshi NC, Tomar MS, et al. Cold plasma technology: advanced and sustainable approach for wastewater treatment. Environ Sci Pollut Res Int 2021; 28(46): 65062-82.
  28. Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. J Chem Eng 2013; 228: 596-613.
  29. Golizadeh Z, Nowruzi B, Falsafi S. Study of antimicrobial activity of biosynthesized nanoparticles via two different methods by freshwater cyanobacteria Nostoc sp. BJM 2022; 4: 34-42.
  30. Barjasteh A, Dehghani Z, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl Sci 2021; 11(8): 3372.
  31. Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, et al. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol 2018; 125(2): 398-408.
  32. Foster JE. Plasma-based water purification: Challenges and prospects for the future. Phys Plasmas 2017; 24(5): 055501.
  33. Patange A, Boehm D, Giltrap M, Lu P, Cullen P, Bourke P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci Total Environ 2018; 631: 298-307.
  34. Varilla C, Marcone M, Annor GA. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: a review. Foods 2020; 9(10): 1435.
  35. Zeghioud H, Nguyen-Tri P, Khezami L, Amrane A, Assadi AA. Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J Water Process Eng 2020; 38: 101664.
  36. Zhao YM, Patange A, Sun DW, Tiwari B. Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr Rev Food Sci Food Saf 2020; 19(6): 3951-79.
  37. Laroque DA, Seó ST, Valencia GA, Laurindo JB, Carciofi BAM. Cold plasma in food processing: Design, mechanisms, and application. J Food Eng 2022; 312: 110748.
  38. Aminraya Jezeh M, Khani M, Niknejad H, Shokri B. Effects of cold atmospheric plasma on viability of breast (MDA-MB-231) and cervical (Hela) cancer cells [in Persian]. Koomesh 2019; 21(4): 694-701.
  39. Afshari R, Hosseini H. Non-thermal plasma as a new food preservation method, its present and future prospect. Arch Adv Biosci 2014; 5(1): 31-45.
  40. Bahreini M, Anvar SA, Nowruzi B, Sari AH. Effects of the cold atmospheric plasma treatment technology on staphylococcus aureus and escherichia coli populations in raw milk. JNFH 2021; 9(4): 296-305.
  41. Wardenier N, Vanraes P, Nikiforov A, Van Hulle SW, Leys C. Removal of micropollutants from water in a continuous-flow electrical discharge reactor.
    J Hazard Mater 2019; 362: 238-45.
  42. Hertwig C, Meneses N, Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci Technol 2018; 77: 131-42.
  43. Misra N, Yadav B, Roopesh M, Jo C. Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Compr Rev Food Sci Food Saf 2019; 18(1): 106-20.
  44. Vanraes P, Ghodbane H, Davister D, Wardenier N, Nikiforov A, Verheust YP, et al. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency. Water Res 2017; 116: 1-12.
  45. Demissie MG, Sabir FK, Edossa GD, Gonfa BA. Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (koseret) and evaluation of its antibacterial activity. J Chem 2020; 2020: 1-9.
  46. Thakur B, Kumar A, Kumar D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S Afr J Bot 2019; 124: 223-7.
  47. MuthuKathija M, Badhusha MSM, Rama V. Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Appl Surf Sci Adv 2023; 15: 100400.
  48. Rakib-Uz-Zaman SM, Apu EH, Muntasir MN, Mowna SA, Khanom MG, Jahan SS, et al. Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges 2022; 13(1): 18.
  49. Widatalla HA, Yassin LF, Alrasheid AA, Ahmed SAR, Widdatallah MO, Eltilib SH, et al. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv 2022; 4(3): 911-5.
  50. Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, Abiola B, Abdusalam I, et al. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostructure Chem 2019; 9: 111-7.
  51. Atri A, Echabaane M, Bouzidi A, Harabi I, Soucase BM, Chaâbane RB. Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon 2023; 9(2): :e13484.
  52. Bhuiyan MSH, Miah MY, Paul SC, Aka TD, Saha O, Rahaman MM, et al. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020; 6(8): e04603.
  53. Alyamani AA, Albukhaty S, Aloufi S, AlMalki FA, Al-Karagoly H, Sulaiman GM. Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules 2021; 26(20): 6140.
  54. Ansari A, Siddiqui VU, Rehman WU, Akram MK, Siddiqi WA, Alosaimi AM, et al. Green synthesis of TiO2 nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity. Catalysts 2022; 12(2): 181.
  55. Singh R, Hano C, Nath G, Sharma B. Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules 2021; 11(2): 299.