غربالگری و شناسایی مولکولی سویه‌‌‌‌های سالمونلا اینفنتیس

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه میکروب‌شناسی، دانشگاه آزاد اسلامی، واحد اهر، اهر، ایران

2 دانشیار، مرکز تحقیقات بیولوژی مولکولی، دانشگاه علوم پزشکی بقیه اله (عج)، تهران، ایران

3 استادیار، گروه میکروب‌شناسی، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران

چکیده

مقدمه: در میان سروتایپ‌های مختلف سالمونلا، سروتایپ اینفنتیس در زمره‌ی مهم‌ترین عوامل بیماری‌زای انسان و حیوان می‌باشد که شیوع آن در حال افزایش می‌باشد. ژن‌های خانه‌دار، ژن‌هایی هستند که برای عملکرد سلول ضروری می‌باشند و به طور معمول، در تمام سلول‌ها بیان می‌شوند و می‌توانند به عنوان ژن‌های تشخیصی در غربالگری عوامل باکتریایی مد نظر قرار گیرند. از این رو، هدف از این مطالعه، بررسی ژن‌های خانه‌دار به منظور غربالگری و تشخیص مولکولی سالمونلا انتریکا سروتایپ اینفنتیس بود.روش‌ها: در مطالعه‌ی حاضر، 40 ایزوله‌ی سالمونلا انتریکا جدا شده از بیماران مشکوک به عفونت با این باکتری که از چند بیمارستان شهر تهران جمع‌آوری گردیده بودند، وارد مطالعه شد. پس از تأیید ایزوله‌های سالمونلا با استفاده از روش‌های استاندارد بیوشیمیایی و باکتریولوژیکی، از PCR (Polymerase chain reaction) با استفاده از پرایمرهای اختصاصی ژن‌های aroC (Chorismate synthase)، purE (Phosphoribosylaminoimidazole carboxylas) و thrA (Aspartokinase + homoserine dehydrogenase) جهت غربالگری و تشخیص مولکولی سالمونلا انتریکا سروتایپ اینفنتیس استفاده گردید. از باکتری‌های شیگلا و اشرشیاکلی به عنوان سویه‌های باکتریایی شاهد استفاده شد.یافته‌ها: ژن‌های خانه‌دار با اندازه‌ی محصول 826 جفت باز برای ژن aroC، 510 جفت باز برای ژن purE و 852 جفت باز ژن thrA در تمامی نمونه‌های سالمونلا انتریکا سروتایپ اینفنتیس قابل ردیابی هستند. جهت ارزیابی اختصاصی بودن نتایج آزمون بر روی سایر باکتری‌های روده‌ای شاهد، هیچ گونه واکنش مثبتی را نشان نداد که حکایت از ویژگی مناسب این ژن‌ها در غربالگری این باکتری نسبت به سایر باکتری‌های روده‌ای دارد.نتیجه‌گیری: ژن‌های خانه‌دار انتخاب شده، اهداف مناسبی جهت تشخیص و افتراق سویه‌های سالمونلا انتریکا سروتایپ اینفنتیس می‌باشند. 

کلیدواژه‌ها


عنوان مقاله [English]

Screening and Molecular Detection of Salmonella Infantis

نویسندگان [English]

  • Hedieh Rahmati 1
  • Reza Ranjbar 2
  • Mehdi Ghiyamirad 3
1 MSc Student, Department of Microbiology, Islamic Azad University, Ahar Branch, Ahar, Iran
2 Associate Professor, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
3 Assistant Professor, Department of Microbiology, Islamic Azad University, Ahar Branch, Ahar, Iran
چکیده [English]

Background: Among different Salmonella serotypes, Salmonella infantis is one of the most important causes of illnesses in humans and animals and its prevalence is increasing. House, keeping genes are required for cell performance and are typically expressed in all types of the cells. These genes can be considered as screening targets for microbial detection. Therefore, the purpose of this study was to evaluate house-keeping genes as targets for screening and molecular detection of Salmonella infantis.Methods: Forty Salmonella infantis strains, recovered from the patients with salmonellosis hospitalized in different hospitals of Tehran, Iran, were included in this study. Identification of the strains were done using standard biochemical and bacteriological methods; polymerase chain reaction (PCR) was used by specially designed primers of housekeeping genes (aroC, purE , thrA) for screening of Salmonella infantis. Some Shigella and Escherichia coli isolates were used as control strains.Findings: The housekeeping genes were amplified successfully with the final size of 826 bp for aroC, 510 bp for purE and 852 bp for thrA genes in all Salmonella infantis. Any positive reaction seen when the test was done on Shigella and Escherichia coli strains, indicated that the method has good specificity.Conclusion: According to the findings achieved in the study, it might be concluded that selected housekeeping genes used in current study are suitable target genes for screening and molecular detection of Salmonella infantis.

کلیدواژه‌ها [English]

  • Salmonella infantis
  • Housekeeping genes
  • aroC
  • pureE
  • thrA
  1. Lesser C, Miller SI. Salmonellosis. In: Fauci F, Braunwald E, Isselbacher KJ, editors. Harrison's principles of internal medicine. 17th ed. New York, NY: McGraw-Hill; 2001.
  2. Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E, et al. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 2004; 186(17): 5883-98.
  3. Hendriksen SW, Orsel K, Wagenaar JA, Miko A, van DE. Animal-to-human transmission of Salmonella Typhimurium DT104A variant. Emerg Infect Dis 2004; 10(12): 2225-7.
  4. Naghoni A, Ranjbar R, Tabaraie B, Farshad S, Owlia P, Safiri Z, et al. High prevalence of integron-mediated resistance in clinical isolates of Salmonella enterica. Jpn J Infect Dis 2010; 63(6): 417-21.
  5. Ryan K. Sherris medical microbiology. 4th ed. New York, NY: McGraw-Hill; 2006. p. 343-73.
  6. Brooks GF, Butel JS, Morse SA. Jawetz, Melinick and Adelberg's medical microbiology. 23th ed. New York, NY: McGraw-Hill; 2004.
  7. Miller T, Prager R, Rabsch W, Fehlhaber K, Voss M. Epidemiological relationship between Salmonella Infantis isolates of human and broiler origin. Lohmann information 2010; 45(2): 27-31.
  8. Ross IL, Heuzenroeder MW. A comparison of three molecular typing methods for the discrimination of Salmonella enterica serovar Infantis. FEMS Immunol Med Microbiol 2008; 53(3): 375-84.
  9. Fonseca EL, Mykytczuk OL, Asensi MD, Reis EM, Ferraz LR, Paula FL, et al. Clonality and antimicrobial resistance gene profiles of multidrug- resistant Salmonella enterica serovar infantis isolates from four public hospitals in Rio de Janeiro, Brazil. J Clin Microbiol 2006; 44(8): 2767-72.
  10. Ranjbar R, Sarshar M, Sadeghifard N. Characterization of genetic diversity among clinical strains of Salmonella enterica serovar infantis by ribotyping method. J Zanjan Univ Med Sci 2012; 20(81): 75-84. [In Persian].
  11. Sabbagh SC, Forest CG, Lepage C, Leclerc JM, Daigle F. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett 2010; 305(1): 1-13.
  12. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2000; 2(2): 145-56.
  13. Nizami SQ, Bhutta ZA, Siddiqui AA, Lubbad L. Enhanced detection rate of typhoid fever in children in a periurban slum in Karachi, Pakistan using polymerase chain reaction technology. Scand J Clin Lab Invest 2006; 66(5): 429-36.
  14. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002; 16(3): 223-9.
  15. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998; 95(6): 3140-5.
  16. Ranjbar R, Giammanco GM, Farshad S, Owlia P, Aleo A, Mammina C. Serotypes, antibiotic resistance, and class 1 integrons in Salmonella isolates from pediatric cases of enteritis in Tehran, Iran. Foodborne Pathog Dis 2011; 8(4): 547-53.
  17. Ranjbar R, Salimkhani E, Sadeghifard N, Yazdi JZ, Morovvati S, Jonaidi N, et al. An outbreak of gastroenteritis of unknown origin in Tehran, July 2003. Pak J Biol Sci 2007; 10(7): 1138-40.
  18. Karami A, Ranjbar R, Z Ahmadi, Z Safiri. Rapid detection of different serovares of Salmonella entrica by multiplex PCR. Iran J Public Health 2007; 36(2): 38-42.
  19. Stepan RM, Sherwood JS, Petermann SR, Logue CM. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS. BMC Microbiol 2011; 11: 153.
  20. Oosterom J. Epidemiological studies and proposed preventive measures in the fight against human salmonellosis. Int J Food Microbiol 1991; 12(1): 41-51.
  21. Gal-Mor O, Valinsky L, Weinberger M, Guy S, Jaffe J, Schorr YI, et al. Multidrug-resistant Salmonella enterica serovar Infantis, Israel. Emerg Infect Dis 2010; 16(11): 1754-7.
  22. Liebana E, Garcia-Migura L, Clouting C, Cassar CA, Clifton-Hadley FA, Lindsay EA, et al. Investigation of the genetic diversity among isolates of Salmonella enterica serovar Dublin from animals and humans from England, Wales and Ireland. J Appl Microbiol 2002; 93(5): 732-44.
  23. Bouchrif B, Paglietti B, Murgia M, Piana A, Cohen N, Ennaji MM, et al. Prevalence and antibiotic-resistance of Salmonella isolated from food in Morocco. J Infect Dev Ctries 2009; 3(1): 35-40.
  24. Bakshi CS, Singh VP, Wood MW, Jones PW, Wallis TS, Galyov EE. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol 2000; 182(8): 2341-4.
  25. Mirold S, Rabsch W, Rohde M, Stender S, Tschape H, Russmann H, et al. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A 1999; 96(17): 9845-50.
  26. Merino LA, Ronconi MC, Navia MM, Ruiz J, Sierra JM, Cech NB, et al. Analysis of the clonal relationship among clinical isolates of Salmonella enterica serovar Infantis by different typing methods. Rev Inst Med Trop Sao Paulo 2003; 45(3): 119-23.
  27. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 1990; 28(3): 495-503.
  28. Saudati M, Ghorbani N, Barati B, Nazarian Sh, Shirazi m, Salehi M, et al. Detection of Salmonella typhi based on the viab sequence by polymerase chain reaction. J Sabzevar Univ Med Sci 2009; 16(4):221-7. [In Persian].
  29. Chaudhry R, Laxmi BV, Nisar N, Ray K, Kumar D. Standardisation of polymerase chain reaction for the detection of Salmonella typhi in typhoid fever. J Clin Pathol 1997; 50(5): 437-9.
  30. Cohen HJ, Mechanda SM, Lin W. PCR amplification of the fimA gene sequence of Salmonella typhimurium, a specific method for detection of Salmonella spp. Appl Environ Microbiol 1996; 62(12): 4303-8.
  31. Pathmanathan SG, Cardona-Castro N, Sanchez-Jimenez MM, Correa-Ochoa MM, Puthucheary SD, Thong KL. Simple and rapid detection of Salmonella strains by direct PCR amplification of the hilA gene. J Med Microbiol 2003; 52(Pt 9): 773-6.
  32. Kardos G, Farkas T, Antal M, Nogrady N, Kiss I. Novel PCR assay for identification of Salmonella enterica serovar Infantis. Lett Appl Microbiol 2007; 45(4): 421-5.
  33. Khan AS, Swerdlow DL, Juranek DD. Precautions against biological and chemical terrorism directed at food and water supplies. Public Health Rep 2001; 116(1): 3-14.
  34. Bohaychuk VM, Gensler GE, King RK, Manninen KI, Sorensen O, Wu JT, et al. Occurrence of pathogens in raw and ready-to-eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada. J Food Prot 2006; 69(9): 2176-82.
  35. Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, et al. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother 2004; 48(10): 4012-5.
  36. Spanakis E. Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res 1993; 21(16): 3809-19.
  37. Aabo S, Rasmussen OF, Rossen L, Sorensen PD, Olsen JE. Salmonella identification by the polymerase chain reaction. Mol Cell Probes 1993; 7(3): 171-8.