بررسی اثر Zinc protoporphyrin به همراه رادیوتراپی بر رشد ملانوما در موش‌های 6BL57C

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی دندان‌پزشکی، کمیته‌ی پژوهشی دانشجویان دندان‌پزشکی، دانشکده‌ی دندان‌پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشجوی پزشکی، کمیته‌ی پژوهشی دانشجویان دندان‌پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، گروه فیزیولوژی، دانشکده‌ی پزشکی و مرکز تحقیقات فیزیولوژی کاربردی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: کاهش بیان ژن همواکسیژناز با عود کمتر و پاسخ بهتر بعضی سرطان‌ها با رادیوتراپی همراه است. هدف از این مطالعه، بررسی اثر Znpp (مهار کننده‌ی همواکسیژناز-1) به همراه رادیوتراپی بر روی سلول‌های ملانوما در موش‌ها بود.روش‌ها: برای انجام این مطالعه، تعداد 24 موش به طور تصادفی به چهار گروه تقسیم شدند. به همه‌ی موش‌ها در روز صفر مطالعه، سلول ملانوما تزریق شد و موش‌ها به مدت 16 روز تیمار شدند. گروه اول و دوم، µg/kg 2000 Znpp (Zinc protoporphyrin) و گروه سوم و چهارم پایه‌ی رقیق کننده‌‌ی Znpp را دریافت کردند. دو گروه اول و سوم در روز 8 مطالعه به میزان 12 گری پرتو درمانی شدند. موش‌ها هر روز از جهت وجود تود‌ه‌ی قابل لمس در محل تزریق، بررسی و در صورت وجود، ابعاد توده اندازه‌گیری شد. تومورها در روز 16 مطالعه خارج شدند. در این تحقیق، اثرات Znpp بر مدل تومور ملانومای موش‌هایی که رادیوتراپی شدند، بررسی شد. اثر 1-Ho بر رشد سلول‌های سرطانی با ایندکس میتوتیک 67-Ki در تومور محاسبه گردید و اندازه‌ی تومورها در روز 8 و 16 مطالعه اندازه‌گیری شدیافته‌ها: اندازه‌ی تومور و ایندکس میتوتیک در موش‌های درمان شده با Znpp و رادیوتراپی به صورت معنی‌داری کمتر از گروه شاهد بود (05/0 > P). اندازه‌ی تومور در موش‌های دریافت کننده‌ی رادیوتراپی و Znpp کمتر از گروهی بود که رادیوتراپی به تنهایی دریافت نموده بودند (05/0 > P).نتیجه‌گیری: Znpp ممکن است همراه رادیوتراپی کاربرد بالینی داشته باشد و در جلوگیری یا کاهش رشد تومور، مؤثرتر از رادیوتراپی به تنهایی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Zinc Protoporphyrin (Znpp) with Radiotherapy on Melanoma Tumor Growth in C57BL6 Mice

نویسندگان [English]

  • Amir-Abbas Samety 1
  • Faezeh Mortazavi 2
  • Khatereh Abdolmaleki 2
  • Atieh Hashemian 1
  • Shaghayegh Haghjooy-Javanmard 3
1 Student of Dentistry, Dental Students' Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
2 Student of Medicine, Medical Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Physiology, School of Medicine AND Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Decrease in Heme Oxygenase-1 gene expression is associated with fewer amounts of reoccurrence and better final response to treatment in some cancers. The aim of this study was to analyze the effect of Zinc Protoporphyrin (Znpp), as Heme Oxygenase-1 (HO-1) inhibitor, and radiotherapy on melanoma cells in mice.Methods: In this experimental study, 24 mice were randomly divided to 4 groups. On the first day of the study, melanoma cells were injected and the mice were treated for 16 days. First and second groups received 2000 mg/kg of Znpp every other day. Third and forth groups were injected diluted liquid of Znpp. The first and third groups received 12 gray of radiotherapy on 8th day. The mice were examined each day for any palpable tumors and size was measured. The tumors were extracted on the 16th day. The effect of HO-1 on growth of cancer cells was studied using mitotic index and the size of tumors were measured on 8th and 16th days.Findings: Size of tumor and mitotic index in mice treated with Znpp and radiotherapy was significantly smaller than in control groups (P < 0.05). Size of tumor in mice treated by radiotherapy and Znpp was less than group only treated with radiotherapy (P < 0.05).Conclusion: The HO-1 inhibitor with radiotherapy may have therapeutic effects and it may be more effective in reducing the tumor’s growth than using radiotherapy alone.

کلیدواژه‌ها [English]

  • Melanoma
  • Heme oxygenase-1
  • Mitotic index
  1. Elwood JM, Jopson J. Melanoma and sun exposure: an overview of published studies. Int J Cancer 1997; 73(2): 198-203.
  2. Major JM, Kiruthu C, Weinstein SJ, Horst RL, Snyder K, Virtamo J, et al. Pre-diagnostic circulating vitamin D and risk of melanoma in men. PLoS One 2012; 7(4): e35112.
  3. Chang KW, Lee TC, Yeh WI, Chung MY, Liu CJ, Chi LY, et al. Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers. Br J Cancer 2004; 91(8): 1551-5.
  4. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J 2007; 401(1): 1-11.
  5. Brigelius-Flohe R, Flohe L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15(8): 2335-81.
  6. Willett WC, MacMahon B. Diet and cancer--an overview. N Engl J Med 1984; 310(10): 633-8.
  7. Nelson RL. Dietary iron and colorectal cancer risk. Free Radic Biol Med 1992; 12(2): 161-8.
  8. Salganik RI, Dianov GL. Molecular mechanisms of the formation of DNA double-strand breaks and induction of genomic rearrangements. Mutat Res 1992; 266(2): 163-70.
  9. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988; 2(10): 2557-68.
  10. T, et al. Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 1999; 80(12): 1945-54.
  11. Maines MD, Abrahamsson PA. Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 1996; 47(5): 727-33.
  12. Kiemer AK, Bildner N, Weber NC, Vollmar AM. Characterization of heme oxygenase 1 (heat shock protein 32) induction by atrial natriuretic peptide in human endothelial cells. Endocrinology 2003; 144(3): 802-12.
  13. Henry F, Bretaudeau L, Barbieux I, Meflah K, Gregoire M. Induction of antigen presentation by macrophages after phagocytosis of tumour apoptotic cells. Res Immunol 1998; 149(7-8): 673-9.
  14. Javanmard SH, Keyhanian K, Loghmani P, Samety AA, Haghdoost F, Rafiei L, et al. Association between heme oxygenase-1 gene promoter polymorphisms and metabolic syndrome in Iranians. Mol Biol Rep 2012; 39(3): 3355-60.
  15. Tiligada E. Chemotherapy: induction of stress responses. Endocr Relat Cancer 2006; 13(Suppl 1): S115-S124.
  16. Fang J, Sawa T, Akaike T, Greish K, Maeda H. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 2004; 109(1): 1-8.
  17. Yoshida C, Yoshida F, Sears DE, Hart SM, Ikebe D, Muto A, et al. Bcr-Abl signaling through the PI-3/S6 kinase pathway inhibits nuclear translocation of the transcription factor Bach2, which represses the antiapoptotic factor heme oxygenase-1. Blood 2007; 109(3): 1211-9.
  18. Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis 2004; 9(1): 27-35.
  19. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 2004; 64(9): 3148-54.
  20. Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ, et al. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood 2008; 111(4): 2200-10.
  21. Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 2006; 25(24): 3365-74.
  22. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, et al. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res 2003; 63(13): 3567-74.
  23. Hirai K, Sasahira T, Ohmori H, Fujii K, Kuniyasu H. Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice. Int J Cancer 2007; 120(3): 500-5.
  24. Yang G, Nguyen X, Ou J, Rekulapelli P, Stevenson DK, Dennery PA. Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Blood 2001; 97(5): 1306-13.
  25. Nowis D, Bugajski M, Winiarska M, Bil J, Szokalska A, Salwa P, et al. Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice. BMC Cancer 2008; 8: 197.
  26. Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ. Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem 2000; 275(18): 13613-20.
  27. Shibahara S, Muller RM, Taguchi H. Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 1987; 262(27): 12889-92.
  28. Lee PJ, Alam J, Wiegand GW, Choi AM. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci U S A 1996; 93(19): 10393-8.
  29. Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989; 86(1): 99-103.
  30. Poss KD, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A 1997; 94(20): 10925-30.
  31. Murali R, Scolyer RA. Tumor-infiltrating lymphocytes and mitotic index in metastatic melanoma as predictors of patient survival. Proc Natl Acad Sci U S A 2010; 107(13): E46.