نقش سلول‌های دندریتیک تحمل‌زا در درمان بیماری‌های خودایمن

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد،گروه ایمونولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

2 استادیار، گروه ایمونولوژی، دانشکده‌ی پزشکی و گروه علوم سلولی کاربردی، دانشکده‌ی فن‌آوری‌های نوین، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

3 دانشیار، گروه ایمونولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

4 استادیار، مرکز تحقیقات علوم پایه و اپیدمولوژی بیماری‌های دستگاه گوارش، پژوهشکده‌ی بیماری‌های گوارش و کبد، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

سلول‌ دندریتیک، سلول‌ ویژه‌ی عرضه کننده‌ی آنتی‌ژن می‌باشد که نقش مهمی در فعال‌سازی پاسخ‌های ایمنی و القای تحمل دارد. این سلول‌ها، دارای دو زیر گروه اصلی سلول‌های دندریتیک معمولی و سلول‌های دندریتیک پلاسموسایتوئید می‌باشند. بیماری‌های خودایمن به علت شکست تحمل پاسخ‌های ایمنی بدن رخ می‌دهد. دیدگاه‌های درمانی متداول جهت درمان بیماری‌های خودایمن بر مبنای عوامل و داروهای غیر اختصاصی استوار است. مصرف این عوامل، اغلب اثرات جانبی شدیدی به دنبال دارد. فهم بهتر از فنوتیپ و عملکرد سلول‌های دندریتیک، موجب ایجاد شیوه‌‌های متعدد برای ساخت سلول‌های دندریتیک تحمل‌زا (tolerogenic dendritic cells یا tolDCs) در محیط آزمایشگاهی شد. سلول دندریتیک تحمل‌زا، نقش مهمی در حفظ تحمل ایمنی از طریق ایجاد آنرژی، القای جمعیت لنفوسیت‌های T تنظیمی و یا حذف سلول‌های T اتوراکتیو دارد. مطالعه‌ بر روی مدل‌های حیوانی و آزمایشگاهی، موجب استفاده از این سلول‌ها در درمان بیماری‌های خودایمن شد. در این مقاله، عوامل و مکانسیم‌های مختلف تولید کننده‌ی سلول‌های دندریتیک تحمل‌زا، کاربرد آن‌ها در القای تحمل و سرکوب پاسخ‌های خودایمن در مدل‌های حیوانی و کارآزمایی‌های بالینی را شرح داده می‌شود. در انتها، در مورد نکات مهم پیش رو در استفاده از این سلول‌ها در درمان بیماری‌های خودایمن بحث خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Tolerogenic Dendritic Cell Therapy in Autoimmune Diseases

نویسندگان [English]

  • Maryam Shahidi 1
  • Seyed Mahmoud Hashemi 2
  • Davar Amani 3
  • Kaveh Baghaei 4
1 MSc Student, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Assistant Professor, Department of Immunology, School of Medicine AND Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Associate Professor, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Assistant Professor, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده [English]

Dendritic cells (DCs) are special antigen-presenting cells that are important for activation of immune response and tolerance. Dendritic cells have been divided in two subtypes of conventional and plasmacytoid dendritic cells. Autoimmune diseases are characterized by break down in immune tolerance. Current therapeutic approaches for treatment of autoimmune diseases are based on nonspecific agents. These agents often cause serious side effects. By advances in understanding phenotype and function of dendritic cells, several protocols have been described for in-vitro generation of tolerogenic dendritic cells (tolDCs). Tolerogenic dendritic cells play an important role in maintenance of immunological tolerance via anergy, generation of regulatory T lymphocyte population, or deletion of autoreactive T cells. Important insight gain from in-vitro studies and animal models have led to the development of clinical use of tolerogenic dendritic cells for treating autoimmune diseases. In this review, we describe the different agents and mechanisms for generating tolerogenic dendritic cells, and applying them for induction of specific tolerance and suppressing autoimmune response in animal models and clinical trials. At the end of this review, we discuss the challenge faced in further developing of tolerogenic dendritic cell therapy in autoimmunity.

کلیدواژه‌ها [English]

  • Dendritic cells
  • Autoimmune diseases
  • Experimental animal models
  • Clinical Trial
  1. Seldin MF. The genetics of human autoimmune disease: A perspective on progress in the field and future directions. J Autoimmun 2015; 64: 1-12.
  2. Zhang Z, Zhang R. Epigenetics in autoimmune diseases: Pathogenesis and prospects for therapy. Autoimmun Rev 2015; 14(10): 854-63.
  3. Atassi MZ, Casali P. Molecular mechanisms of autoimmunity. Autoimmunity 2008; 41(2): 123-32.
  4. Sun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015; 75(2): 249-55.
  5. Furlan R, Butti E, Pluchino S, Martino G. Gene therapy for autoimmune diseases. Curr Opin Mol Ther 2004; 6(5): 525-36.
  6. Sykes M, Nikolic B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature 2005; 435(7042): 620-7.
  7. Sun L, Hurez VJ, Thibodeaux SR, Kious MJ, Liu A, Lin P, et al. Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells. Aging Cell 2012; 11(3): 509-19.
  8. Hashemi SM, Hassan ZM, Pourfathollah AA, Soudi S, Shafiee A, Soleimani M. Comparative immunomodulatory properties of adipose-derived mesenchymal stem cells conditioned media from BALB/c, C57BL/6, and DBA mouse strains. J Cell Biochem 2013; 114(4): 955-65.
  9. Yousefi F, Ebtekar M, Soleimani M, Soudi S, Hashemi SM. Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2013; 17(3): 608-16.
  10. Yousefi F, Ebtekar M, Soudi S, Soleimani M, Hashemi SM. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett 2016; 172: 94-105.
  11. Rahavi H, Hashemi SM, Soleimani M, Mohammadi J, Tajik N. Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model. J Diabetes Res 2015; 2015: 878535.
  12. Dinarvand P, Hashemi SM, Soleimani M. Effect of transplantation of mesenchymal stem cells induced into early hepatic cells in streptozotocin-induced diabetic mice. Biol Pharm Bull 2010; 33(7): 1212-7.
  13. Khosrowpour Z, Hashemi SM, Mohammadi-Yeganeh S, Soudi S. Pretreatment of Mesenchymal Stem Cells With Leishmania major Soluble Antigens Induce Anti-Inflammatory Properties in Mouse Peritoneal Macrophages. J Cell Biochem 2017; 118(9): 2764-79.
  14. Duraes FV, Lippens C, Steinbach K, Dubrot J, Brighouse D, Bendriss-Vermare N, et al. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation. J Autoimmun 2016; 67: 8-18.
  15. Maazi H, Lam J, Lombardi V, Akbari O. Role of plasmacytoid dendritic cell subsets in allergic asthma. Allergy 2013; 68(6): 695-701.
  16. Mackern-Oberti JP, Llanos C, Vega F, Salazar-Onfray F, Riedel CA, Bueno SM, et al. Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmun Rev 2015; 14(2): 127-39.
  17. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31: 563-604.
  18. Suciu-Foca N, Manavalan JS, Scotto L, Kim-Schulze S, Galluzzo S, Naiyer AJ, et al. Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells: review. Int Immunopharmacol 2005; 5(1): 7-11.
  19. Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003; 11(3-4): 245-58.
  20. Kubsch S, Graulich E, Knop J, Steinbrink K. Suppressor activity of anergic T cells induced by IL-10-treated human dendritic cells: association with IL-2- and CTLA-4-dependent G1 arrest of the cell cycle regulated by p27Kip1. Eur J Immunol 2003; 33(7): 1988-97.
  21. Thomas DC, Wong FS, Zaccone P, Green EA, Wallberg M. Protection of islet grafts through transforming growth factor-beta-induced tolerogenic dendritic cells. Diabetes 2013; 62(9): 3132-42.
  22. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 1998; 160(3): 1224-32.
  23. Zhou F, Lauretti E, di MA, Ciric B, Gonnella P, Zhang GX, et al. Intravenous transfer of apoptotic cell-treated dendritic cells leads to immune tolerance by blocking Th17 cell activity. Immunobiology 2013; 218(8): 1069-76.
  24. Raich-Regue D, Glancy M, Thomson AW. Regulatory dendritic cell therapy: from rodents to clinical application. Immunol Lett 2014; 161(2): 216-21.
  25. Humbert JM, Halary F. Viral and non-viral methods to genetically modify dendritic cells. Curr Gene Ther 2012; 12(2): 127-36.
  26. Fjose A, Ellingsen S, Wargelius A, Seo HC. RNA interference: mechanisms and applications. Biotechnol Annu Rev 2001; 7: 31-57.
  27. Javeed A, Zhang B, Qu Y, Zhang A, Sun C, Zhang L, et al. The significantly enhanced frequency of functional CD4+CD25+Foxp3+ T regulatory cells in therapeutic dose aspirin-treated mice. Transpl Immunol 2009; 20(4): 253-60.
  28. Unger WW, Laban S, Kleijwegt FS, van der Slik AR, Roep BO. Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol 2009; 39(11): 3147-59.
  29. Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol 2006; 117(3): 522-43.
  30. Bosma BM, Metselaar HJ, Nagtzaam NM, de HR, Mancham S, van der Laan LJ, et al. Dexamethasone transforms lipopolysaccharide-stimulated human blood myeloid dendritic cells into myeloid dendritic cells that prime interleukin-10 production in T cells. Immunology 2008; 125(1): 91-100.
  31. Fedoric B, Krishnan R. Rapamycin downregulates the inhibitory receptors ILT2, ILT3, ILT4 on human dendritic cells and yet induces T cell hyporesponsiveness independent of FoxP3 induction. Immunol Lett 2008; 120(1-2): 49-56.
  32. Chauveau C, Remy S, Royer PJ, Hill M, Tanguy-Royer S, Hubert FX, et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 2005; 106(5): 1694-702.
  33. Martin E, Capini C, Duggan E, Lutzky VP, Stumbles P, Pettit AR, et al. Antigen-specific suppression of established arthritis in mice by dendritic cells deficient in NF-kappaB. Arthritis Rheum 2007; 56(7): 2255-66.
  34. Popov I, Li M, Zheng X, San H, Zhang X, Ichim TE, et al. Preventing autoimmune arthritis using antigen-specific immature dendritic cells: a novel tolerogenic vaccine. Arthritis Res Ther 2006; 8(5): R141.
  35. Ducoroy P, Micheau O, Perruche S, Dubrez-Daloz L, de FD, Dutartre P, et al. LF 15-0195 immunosuppressive agent enhances activation-induced T-cell death by facilitating caspase-8 and caspase-10 activation at the DISC level. Blood 2003; 101(1): 194-201.
  36. Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 2006; 107(9): 3632-8.
  37. Bonifazi P, Zelante T, D'Angelo C, De LA, Moretti S, Bozza S, et al. Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2009; 2(4): 362-74.
  38. D'Ambrosio A, Colucci M, Pugliese O, Quintieri F, Boirivant M. Cholera toxin B subunit promotes the induction of regulatory T cells by preventing human dendritic cell maturation. J Leukoc Biol 2008; 84(3): 661-8.
  39. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002; 195(2): 221-31.
  40. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 2011; 34(9): 2026-32.
  41. Marin-Gallen S, Clemente-Casares X, Planas R, Pujol-Autonell I, Carrascal J, Carrillo J, et al. Dendritic cells pulsed with antigen-specific apoptotic bodies prevent experimental type 1 diabetes. Clin Exp Immunol 2010; 160(2): 207-14.
  42. Tai N, Yasuda H, Xiang Y, Zhang L, Rodriguez-Pinto D, Yokono K, et al. IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clin Immunol 2011; 139(3): 336-49.
  43. ACR Meeting. Arthritis & Rheumatism 2011; 63(S10): 1.
  44. Hilkens CM, Isaacs JD. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now? Clin Exp Immunol 2013; 172(2): 148-57.
  45. Li R, Zheng X, Popov I, Zhang X, Wang H, Suzuki M, et al. Gene silencing of IL-12 in dendritic cells inhibits autoimmune arthritis. J Transl Med 2012; 10: 19.
  46. Stoop JN, Harry RA, von DA, Isaacs JD, Robinson JH, Hilkens CM. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum 2010; 62(12): 3656-65.
  47. Li XL, Liu Y, Cao LL, Li H, Yue LT, Wang S, et al. Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines. Mol Cell Neurosci 2013; 56: 85-95.
  48. Li H, Wang CC, Zhang M, Li XL, Zhang P, Yue LT, et al. Statin-modified dendritic cells regulate humoral immunity in experimental autoimmune myasthenia gravis. Mol Cell Neurosci 2015; 68: 284-92.
  49. Raiotach-Regue D, Grau-Lopez L, Naranjo-Gomez M, Ramo-Tello C, Pujol-Borrell R, Martinez-Caceres E, et al. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur J Immunol 2012; 42(3): 771-82.
  50. Farias AS, Spagnol GS, Bordeaux-Rego P, Oliveira CO, Fontana AG, de Paula RF, et al. Vitamin D3 induces IDO+ tolerogenic DCs and enhances Treg, reducing the severity of EAE. CNS Neurosci Ther 2013; 19(4): 269-77.
  51. Matsuda R, Kezuka T, Nishiyama C, Usui Y, Matsunaga Y, Okunuki Y, et al. Interleukin-10 gene-transfected mature dendritic cells suppress murine experimental autoimmune optic neuritis. Invest Ophthalmol Vis Sci 2012; 53(11): 7235-45.
  52. van Duivenvoorde LM, Han WG, Bakker AM, Louis-Plence P, Charbonnier LM, Apparailly F, et al. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J Immunol 2007; 179(3): 1506-15.
  53. van Duivenvoorde LM, Louis-Plence P, Apparailly F, van der Voort EI, Huizinga TW, Jorgensen C, et al. Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum 2004; 50(10): 3354-64.
  54. Lim DS, Kang MS, Jeong JA, Bae YS. Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur J Immunol 2009; 39(5): 1334-43.
  55. Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, et al. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 2002; 195(1): 15-21.
  56. Pedersen AE, Gad M, Kristensen NN, Haase C, Nielsen CH, Claesson MH. Tolerogenic dendritic cells pulsed with enterobacterial extract suppress development of colitis in the severe combined immunodeficiency transfer model. Immunology 2007; 121(4): 526-32.
  57. Gonzalez-Rey E, Delgado M. Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology 2006; 131(6): 1799-811.
  58. Mansilla MJ, Selles-Moreno C, Fabregas-Puig S, Amoedo J, Navarro-Barriuso J, Teniente-Serra A, et al. Beneficial effect of tolerogenic dendritic cells pulsed with MOG autoantigen in experimental autoimmune encephalomyelitis. CNS Neurosci Ther 2015; 21(3): 222-30.
  59. Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, et al. Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity. J Immunol 2011; 186(6): 3346-55.
  60. Xiao BG, Wu XC, Yang JS, Xu LY, Liu X, Huang YM, et al. Therapeutic potential of IFN-gamma-modified dendritic cells in acute and chronic experimental allergic encephalomyelitis. Int Immunol 2004; 16(1): 13-22.
  61. Salazar L, Aravena O, Abello P, Escobar A, Contreras-Levicoy J, Rojas-Colonelli N, et al. Modulation of established murine collagen-induced arthritis by a single inoculation of short-term lipopolysaccharide-stimulated dendritic cells. Ann Rheum Dis 2008; 67(9): 1235-41.
  62. Jaen O, Rulle S, Bessis N, Zago A, Boissier MC, Falgarone G. Dendritic cells modulated by innate immunity improve collagen-induced arthritis and induce regulatory T cells in vivo. Immunology 2009; 126(1): 35-44.
  63. Kalergis AM, Iruretagoyena MI, Barrientos MJ, Gonzalez PA, Herrada AA, Leiva ED, et al. Modulation of nuclear factor-kappaB activity can influence the susceptibility to systemic lupus erythematosus. Immunology 2009; 128(1 Suppl): e306-e314.
  64. Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol 2007; 178(12): 7849-58.
  65. Cai Z, Zhang W, Li M, Yue Y, Yang F, Yu L, et al. TGF-beta1 gene-modified, immature dendritic cells delay the development of inflammatory bowel disease by inducing CD4(+)Foxp3(+) regulatory T cells. Cell Mol Immunol 2010; 7(1): 35-43.
  66. Morita Y, Yang J, Gupta R, Shimizu K, Shelden EA, Endres J, et al. Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 2001; 107(10): 1275-84.
  67. Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum 2009; 60(2): 380-9.
  68. Toscano MG, Delgado M, Kong W, Martin F, Skarica M, Ganea D. Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol Ther 2010; 18(5): 1035-45.
  69. Liu Z, Xu X, Hsu HC, Tousson A, Yang PA, Wu Q, et al. CII-DC-AdTRAIL cell gene therapy inhibits infiltration of CII-reactive T cells and CII-induced arthritis. J Clin Invest 2003; 112(9): 1332-41.
  70. Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY, et al. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality? Autoimmun Rev 2014; 13(2): 138-50.