تأثیر تمرین تناوبی با دو شدت متفاوت بر تری‌گلیسرید لیپاز بافت چربی و پری لیپین5 بافت چربی احشایی موش‌های صحرایی نر مبتلا به دیابت نوع 2

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی دکترای فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 استاد، گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

3 استادیار، گروه تربیت بدنی و علوم ورزشی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

مقاله پژوهشی




مقدمه: اطلاعات محدودی در زمینه‌ی اثر تمرینات ورزشی بر متابولیسم بافت چربی وجود دارد. از این رو هدف از پژوهش حاضر، بررسی تأثیر تمرین تناوبی با دو شدت متفاوت بر تری‌گلیسرید لیپاز بافت چربی و پری لیپین5 بافت چربی احشایی موش‌های صحرایی نر مبتلا به دیابت نوع 2 بود.
روش‌ها: 32 سر موش صحرایی نر نژاد ویستار در دو گروه سالم و مبتلا به دیابت قرار گرفته و سپس موش‌های مبتلا به دیابت به صورت تصادفی به گروه‌های شاهد مبتلا به دیابت و دو گروه تمرین تناوبی با شدت بالا و متوسط تقسیم شدند تا مطالعه‌ی حاضر روی 4 گروه (هر گروه 8 سر) انجام شود. تمرین در گروه متوسط با
70-65 درصد و در گروه شدت بالا با 90-85 درصد، حداکثر اکسیژن مصرفی در طول هشت هفته انجام شد. 48 ساعت پس از آخرین نوبت تمرین، موش‌ها با تزریق داخل صفاقی ترکیبی از کتامین و زایلازین بیهوش و بافت چرب احشایی آن‌ها برداشته شد. بیان پروتئین پری‌لیپین 5 و تری‌گلیسرید لیپاز بافت چربی با تکنیک وسترن بلات به دست آمد. ﺩﺍﺩﻩ‌ﻫﺎ ﺑﺎ ﺁﺯﻣﻮن ﺁﻣﺎری تحلیل واریانس یک‌طرفه ﻭ ﺁﺯﻣﻮﻥ تعقیبی Tukey ﺁﻧﺎﻟﻴﺰ ﺷﺪﻧﺪ.
یافته‌ها: نتایج آزمون تعقیبی بیانگر کاهش معنی‌دار پری‌لیپین 5 در گروه تمرین تناوبی با شدت بالا و متوسط، نسبت به گروه شاهد مبتلا به دیابت بود. در حالی که بین گروه تمرینی با شدت بالا و با شدت متوسط، تفاوت معنی‌دار وجود نداشت. نتایج آزمون آنالیز واریانس یک‌طرفه نشان داد که بین گروه‌های مطالعه در مقادیر تری‌گلیسرید لیپاز بافت چربی، تفاوت معنی‌داری وجود نداشت.
نتیجه‌گیری: هر دو پروتکل تمرین تناوبی با شدت بالا و متوسط باعث کاهش مقادیر بافتی پری‌لیپین 5 در موش‌های صحرایی مبتلا به دیابت نوع 2 می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Interval Training with Two Different Intensities on Adipose Tissue Triglyceride Lipase and Perilipin5 in Type 2 Diabetic Male Rats

نویسندگان [English]

  • Roya Besharati 1
  • Ramin Shabani 2
  • Shahram Gholamrezaei 3
1 PhD Candidate, Department of Physical Education and Sports Science, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Professor, Department of Physical Education and Sports Science, Rasht Branch, Islamic Azad University, Rasht, Iran
3 Assistant Professor, Department of Physical Education and Sports Science, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده [English]

Background: There is limited information on the effect of types of training on important regulators of fat storage and lipolysis. Therefore, the aim of the present study was to investigate the effect of interval training at two different intensities on adipose tissue triglyceride lipase and perilipin5 visceral fat tissue of type 2 diabetic male rats.
Methods: Thirty-two male Wistar rats were divided into two groups: healthy and diabetic, and then diabetic rats were randomly divided into three subgroups of diabetic control and two groups HIIT and MIIT thus, the present study was performed on four groups (8 groups each). The training was performed in MIIT with 65-70% and in HIIT group with 85-90% of maximum oxygen consumption during eight weeks. Then 24 hours after the last training session, the adipose tissue of the mice were removed using a combined intraperitoneal injection consisting anesthetic ketamine and xylazine. Expression of perilipin 5 and ATGL protein was detected via Western blotting. Data were analyzed by one-way ANOVA and Tukey's post hoc test.
Findings: The results of the post hoc test showed a significant decrease in perilipin 5 in the HIIT group and MIIT compared to the control diabetic group. Meanwhile no overall significant difference was observed between the HIIT and MIIT groups. Also, the results of a one-way analysis of variance showed that there was no significant difference in ATGL values between the research groups.
Conclusion: Both HIIT and MIIT protocols can lead to significant decrease in the tissue concentrations of perilipin 5 in type 2 diabetic rats.

کلیدواژه‌ها [English]

  • Diabetes
  • Perilipin 5
  • High-Intensity Interval Training
  • ATGL-1 protein
  • C elegans
  1. Mackenzie R, Maxwell N, Castle P, Brickley G, Watt P. Acute hypoxia and exercise improve insulin sensitivity in individuals with type 2 diabetes. Diabetes Metab Res Rev 2016; 27(1): 94-101.
  2. Layne AS, Nasrallah S, South MA, Howell MEA, McCurry MP, Ramsey MW, et al. Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training. J Clin Endocrinol Metab 2011; 96(6): 1815-26.
  3. Pyörälä M, Miettinen H, Laakso M, Pyörälä K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation 2016; 98(5): 398-404.
  4. Shaw CS, Shepherd SO, Wagenmakers AJM, Hansen D, Dendale P, van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 3 expression in type I muscle fibers of paents with type 2 diabetes. Am J Physiol Endocrinol Metab 2016; 303(9): E1158-65.
  5. Pourteymour S, Lee S, Langleite TM, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 3 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015; 3(8): e12481.
  6. Pollak NM, Schweiger M, Jaeger D, Kolb D, Kumari M, Schreiber R, et al. Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J Lipid Res 2018; 54: 1092-102.
  7. Martin-Smith R, Cox A, Buchan DS, Baker JS, Grace F, Sculthorpe N, High intensity interval training (HIIT) improves cardiorespiratory fitness (CRF) in healthy, overweight and obese adolescents: A systematic review and meta-analysis of controlled studies. Int J Environ Res Public Health 2020; 17(8): 2955.
  8. Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S, Kojidani T, et al. Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 2017; 34(14): 2721-31.
  9. Louche K, Badin PM, Montastier E, Laurens C, Bourlier V, De Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 2013; 98(12): 4863-71.
  10. Peters SJ, Samjoo IA, Devries MC, Stevic I,
    Robertshaw HA, Tarnopolsky MA. Perilipin family [PLIN] proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 2012; 37(4): 724-35.
  11. Amati F, Dubé JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM, et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 2011; 60(10): 2588-97.
  12. Astorino TA, Schubert MM. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Eur J Appl Physiol 2018; 118(1): 51-63.
  13. Than A, Xu S, Li R, Leow MS, Sun L, Chen P. Angiotensin type 2 receptor activation promotes brownin of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther 2017; 2(1): 1-12.
  14. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep 2017; 7(1): 204.
  15. Covington JD, Johannsen DL, Coen PM, Burk DH, Obanda DN, Ebenezer PJ, et al. Intramyocellular lipid droplet size rather than total lipid content is related to insulin sensitivity after 8 weeks of overfeeding. Obesity (Silver Spring) 2017; 25(12): 2079-87.
  16. Ghafari M, Faramarzi M, Banitalebi E. Compar two different endurance training intensities on perilipin 3 protein expression in skeletal muscle, serum glucose levels and insulin in streptozotocin-induced diabetic rats. IJDM 2018; 17(4): 198-205. [In Persian].
  17. Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes 2013; 62(7): 2287-94.
  18. Kleinert M, Parker BL, Chaudhuri R, Fazakerley DJ, Serup A, Thomas KC, et al. mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Mol Metab 2016: 5(8): 646-55.
  19. Ko K, Woo J, Bae JY, Roh HT, Lee YH, Shin KO. Exercise training improves intramuscular triglyceride lipolysis sensitivity in high-fat diet induced obese mice. Lipids Health Dis 2018; 17(1): 81-9.
  20. Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism 2015; 64(6): 658-65.
  21. Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, et al. Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 2009; 94(10): 4077-85.
  22. Moghadami K, Mohebbi H, Khalafi M, Akbari A, Faridnia M, Tabari E. The effect of interval training intensity on protein levels of ATGL and Perilipin 5 in visceral adipose tissue of type 2 diabetic male rats. Int J Appl Exerc Physiol 2018; 7(4): 62-70. [In Persian].
  23. Osumi T, Kuramoto K. Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. Exp Cell Res 2016; 340(2): 198-204.
  24. Ramos SV, Turnbull PC, MacPherson REK, LeBlanc PJ, Ward WE, Peters SJ. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction. Exp Physiol 2015;
    100(4): 450-62.
  25. Rinnankoski-Tuikka R, Hulmi JJ, Torvinen S, Silvennoinen M, Lehti M, Kivelä R, et al. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change. Metabolism 2014; 63(8): 1031-40.
  26. LeBlanc ES, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults: Updated evidence report and systematic review for the US preventive services task Force. JAMA 2018; 320(11): 1172-91.
  27. Chin EC, Yu AP, Lai CW, Fong DY, Chan DK, Wong SH, et al. Low-frequency HIIT improves body composition and aerobic capacity in overweight men. Med Sci Sports Exerc 2020; 52(1): 56-66.
  28. Shepherd SO, Cocks M, Meikle PJ, Mellett NA, Ranasinghe AM, Barker TA, et al. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int J Obes (Lond) 2015; 41(12): 1745-54.