پیش‌بینی تولد نوزادان با وزن کم در هر یک از بازه‌های دوران بارداری، با به کارگیری روش‌های هوش مصنوعی فازی و غیر فازی، بدون استفاده از اندازه‌گیری‌های حاصل از سونوگرافی

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجو، گروه مهندسی پزشکی، دانشکده‌ی فنی مهندسی، دانشگاه اصفهان، اصفهان، ایران

2 استادیار، گروه مهندسی پزشکی، دانشکده‌ی فنی مهندسی، دانشگاه اصفهان، اصفهان، ایران

3 استادیار، گروه آمار و اپیدمیولوژی، دانشکده‌ی بهداشت، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دانشجوی دکتری، گروه مامایی، دانشکده‌ی پرستاری و مامایی، دانشگاه علوم پزشکی اصفهان، ایران

چکیده

مقدمه: وزن کم نوزاد در زمان تولد را می‌توان مهم‌ترین عامل در بیماری و مرگ ‌ومیر نوزادان دانست. نوزادانی که در زمان تولد وزن کمی دارند، بیشتر در معرض بیماری‌ها قرار می‌گیرند. به همین دلیل، پیش‌بینی احتمال کم وزن بودن نوزاد پیش از تولد، از اهمیت بالایی برخوردار است.روش‌ها: در این مطالعه، یک سیستم تشخیصی به کمک رایانه ارایه شد که به کمک آن می‌توان گروه وزنی نوزاد را در زمان تولد پیش‌بینی کرد و نوزادان را در دو گروه نوزاد با وزن کم و وزن طبیعی طبقه‌بندی نمود. همچنین، ارتباط میان وزن کم نوزاد در زمان تولد و فاکتورهای ثبت شده از مادران باردار در سه‌ماهه‌ی اول، دوم و سوم بارداری مورد بررسی قرارگرفت. مجموعه‌ی داده‌های مورد استفاده در این مطالعه شامل اطلاعات گرفته ‌شده از 526 زن باردار با 95 متغیر مختلف ثبت شده از آن‌ها است. برای طبقه‌بندی نمونه‌های این مطالعه از روش‌های کلاس‌بندی نزدیک‌ترین همسایه‌ها، شبکه‌های عصبی احتمالاتی و دو نوع کلاس‌بند عصبی- فازی انطباقی استفاده گردیده است. علاوه بر آن، انتخاب ویژگی به روش پی‌درپی نیز برای کاهش اندازه‌ی فضای ویژگی‌ها مورد استفاده قرار گرفته است.یافته‌ها: صحت طبقه‌بندی با استفاده از کلاس‌بندهای نزدیک‌ترین همسایه‌ها، شبکه‌ی عصبی احتمالاتی و کلاس‌بند عصبی- فازی انطباقی با استفاده از دو الگوریتم گرادیان مزدوج مدرج و شرایط زبانی، با انتخاب ویژگی به ترتیب برابر با 93، 83، 80 و 83 درصدگزارش شده است.نتیجه‌گیری: از میان کلاس‌بندهای مورد استفاده، توان بهترین کلاس‌بند مورد استفاده در این مطالعه با استفاده از روش‌های مناسب اعتبارسنجی، 96 درصد و خطای نوع اول آن 1/0 بوده است. با توجه به این نتایج، سیستم تشخیصی ارائه ‌شده از لحاظ بالینی معتبر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Low Birth Weight in Infants via Artificial Intelligence Techniques without Using Sonographic Measurements

نویسندگان [English]

  • Mahtab Farahbakhsh 1
  • Hamid Reza Marateb 2
  • Marjan Mansourian 3
  • Masoomeh Goodarzi-Khoigani 4
1 Student, Department of Biomedical Engineering, School of Engineering, University of Isfahan, Isfahan, Iran
2 Assistant Professor, Department of Biomedical Engineering, School of Engineering, University of Isfahan, Isfahan, Iran
3 Assistant Professor, Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
4 PhD Student, Department of Midwifery, School of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Birth weight is probably the most important factor affecting neonatal mortality and morbidity. Compared with normal weight infants, low-birth-weight (LBW) infants may be more at risk for many health problems. The prediction of low birth weight is important as it may cause mental and physical health problems in childhood and adulthood. We assessed a computer-aided diagnosis system to classify infants to low or normal birth weight categories.Methods: In the present study, the association between the low birth weight and the intake of about 40 types of macro- and micronutrients during the first (1st Tr), second (2nd Tr.) and third (3rd Tr.) trimesters was assessed based on demographic and reproductive characteristics, physical activity and nutrients intake in pregnant women. The dataset used in this study contained 526 pregnant women with 95 input features. The used classifiers were k-Nearest Neighbors (kNN), Probabilistic Neural Network (PNN), and two Adaptive Neuro-Fuzzy Classifiers (ANFC-SCG: Scaled Conjugate Gradient, ANFC-LHs: Linguistic Hedges). Also, sequential feature selection (FS) was applied on the low birth weight risk factors to reduce the feature space.Findings: The accuracy of the classifiers kNN, PNN, ANFC-SCG and ANFC-LHs were 48%, 50%, 50% and 50% without feature selection and 93%, 83%, 80% and 83% with feature selection, respectively.Conclusion: Among the tested classifiers, the statistical power and type I error (α) of the best configuration (FS-kNN; k = 3) were 96% and 0.10 in the Leave-One-Out validation framework, showing that the proposed diagnosis system is clinically reliable. Also, using Leave-One-Out cross-validation, the guarding against Type III error was granted.

کلیدواژه‌ها [English]

  • Computer-aided medical diagnosis
  • Leave-one-out cross validation
  • Low birth weight
  • Sequential feature selection
  1. Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ 1987; 65(5): 663-737.
  2. Singh GK, Kenney MK, Ghandour RM, Kogan MD, Lu MC. Mental Health Outcomes in US Children and Adolescents Born Prematurely or with Low Birthweight. Depress Res Treat 2013; 2013: 570743.
  3. Pfab T, Slowinski T, Godes M, Halle H, Priem F, Hocher B. Low birth weight, a risk factor for cardiovascular diseases in later life, is already associated with elevated fetal glycosylated hemoglobin at birth. Circulation 2006; 114(16): 1687-92.
  4. Liew G, Wang JJ, Duncan BB, Klein R, Sharrett AR, Brancati F, et al. Low birthweight is associated with narrower arterioles in adults. Hypertension 2008; 51(4): 933-8.
  5. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 2009; 54(2): 248-61.
  6. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 2008; 19(1): 151-7.
  7. Barker D, Bull A, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ 1990; 301(6746): 259-62.
  8. Rwebembera AA, Munubhi EK, Manji KP, Mpembeni R, Philip J. Relationship between infant birth weight
  9. Agarwal R, Virmani D, Jaipal M, Gupta S, Sankar MJ, Bhatia S, et al. Poor zinc status in early infancy among both low and normal birth weight infants and their mothers in Delhi. Neonatology 2013; 103(1): 54-9.
  10. Badakhsh M, Khamseh ME, Seifoddin M, Kashanian M, Malek M, Shafiee G, et al. Impact of maternal zinc status on fetal growth in an Iranian pregnant population. Gynecological Endocrinology 2011; 27(12): 1074-6.
  11. Muthayya S, Kurpad AV, Duggan CP, Bosch RJ, Dwarkanath P, Mhaskar A, et al. Low maternal vitamin B12 status is associated with intrauterine growth retardation in urban South Indians. Eur J Clin Nutr 2006; 60(6): 791-801.
  12. Khan N, Jamal M. Maternal risk factors associated with low birth weight. J Coll Physicians Surg Pak 2003; 13(1): 25-8.
  13. Reichman NE, Pagnini DL. Maternal age and birth outcomes: data from New Jersey. Fam Plann Perspect 1997; 29(6): 268-72, 295.
  14. Bener A, Salameh KM, Yousafzai MT, Saleh NM. Pattern of Maternal Complications and Low Birth Weight: Associated Risk Factors among Highly Endogamous Women. ISRN Obstet Gynecol 2012; 2012: 540495.
  15. Xiong X, Mayes D, Demianczuk N, Olson DM, Davidge ST, Newburn-Cook C, et al. Impact of pregnancy-induced hypertension on fetal growth. Am J Obstet Gynecol 1999; 180(1 Pt 1): 207-13.
  16. Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review. JAMA 1998; 280(15): 1339-46.
  17. Melamed N, Yogev Y, Meizner I, Mashiach R, Bardin R, Ben-Haroush A. Sonographic fetal weight estimation: which model should be used? J Ultrasound Med 2009; 28(5): 617-29.
  18. Yu J, Wang Y, Chen P. Fetal Weight Estimation Using the Evolutionary Fuzzy Support Vector Regression for Low-Birth-Weight Fetuses. Browse Journals and Magazines 2009; 13(1): 57-66.
  19. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am J Obstet Gynecol 1985; 151(3): 333-7.
  20. Scott F, Beeby P, Abbott J, Edelman D, Boogert A. New formula for estimating fetal weight below 1000 g: comparison with existing formulas. J Ultrasound Med 1996; 15(10): 669-72.
  21. Goodarzi Khoigani M, Paknahad Z, Mardanian F. The relationship between nutrients intake and preeclampsia in pregnant women. J Res Med Sci 2012; 17(Suppl 2): S210-S217.
  22. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Information Theory Society 1967; 13(1): 21-7.
  23. Giri D, Acharya UR, Martis RJ, Sree SV, Lim TC, Ahamed T, et al. Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform. Knowledge-Based Systems 2013; 37: 274-82.
  24. El Emary IMM, Srinivasan R. On the application of various probabilistic neural networks in solving different pattern classification problems. World Applied Sciences Journal 2008; 4(6): 772-80.
  25. Georgiou VL, Pavlidis NG, Parsopoulos KE, Vrahatis MN. Optimizing the performance of probabilistic neural networks in a bionformatics task [Online]. [cited 2004]; Available from: URL: http://www.math.upatras.gr/~kostasp/papers/GPPAV_PNN.pdf
  26. Specht DF. Probabilistic neural networks. Neural Networks 1990; 3(1): 109-18.
  27. Hajmeer M, Basheer I. A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. J Microbiol Methods 2002; 51(2): 217-26.
  28. Jang J. ANFIS: adaptive-network-based fuzzy inference system. IEEE Systems, Man, and Cybernetics Society 1993; 23(3): 665-85.
  29. Borkar P, Malik L. Acoustic signal based traffic density state estimation using adaptive Neuro-Fuzzy classifier. Proceedings of the International Conference on Fuzzy Systems; 2013 Jul 10; Hyderabad, India. 2013.
  30. Møller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993; 6(4): 525-33.
  31. Cetisli B. The effect of linguistic hedges on feature selection: Part 2. Expert Systems with Applications 2010; 37(8): 6102-8.
  32. Jain A, Zongker D. Feature selection: Evaluation, application, and small sample performance. IEEE Transactions On Pattern Analysis And Machine Intelligence 1997; 19(2): 153-8.
  33. Refaeilzadeh P, Tang L, Liu H. Cross-Validation. In: LIU L, Tamer Özsu M, Editors. Encyclopedia of database systems. New York, NY: Springer; 2009. p. 532-8.
  34. Meijer RJ, Goeman JJ. Efficient approximate k-fold and leave-one-out cross-validation for ridge regression. Biom J 2013; 55(2): 141-55.
  35. Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Information Processing & Management 2009; 45(4): 427-37.
  36. Ichino M, Yaguchi H. Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Transactions on Systems Man and Cybernetics 1994; 24(4): 697-708.
  37. Marateb HR, Mansourian M, Adibi P, Farina D. Manipulating measurement scales in medical statistical analysis and data mining: A review of methodologies. J Res Med Sci 2014; 19(1): 47-56.
  38. Nahum GG, Pham KQ, McHugh JP. Ultrasonic prediction of term birth weight in Hispanic women. Accuracy in an outpatient clinic. J Reprod Med 2003; 48(1): 13-22.
  39. Weinberger E, Cyr DR, Hirsch JH, Richardson T, Hanson JA, Mack LA. Estimating fetal weights less than 2000 g: an accurate and simple method. AJR Am J Roentgenol 1984; 142(5): 973-7.
  40. Yaghootkar H, Freathy RM. Genetic origins of low birth weight. Curr Opin Clin Nutr Metab Care 2012; 15(3): 258-64.
  41. Cunningham F, Leveno K, Bloom S, Spong CY, Dashe J. Williams Obstetrics 24/E. 24th ed. New York, NY: McGraw-Hill Education; 2014.