بررسی تأثیر باکتریوفاژها علیه عفونت‌های ناشی از باکتری‌های گرم منفی در شرایط In Vivo: مطالعه‌ی مروری سیستماتیک

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری پژوهشی، مرکز تحقیقات عفونی اطفال، دانشگاه علوم پزشکی مازندران، ساری، ایران

2 مرکز تحقیقات عفونی اطفال، دانشگاه علوم پزشکی مازندران، ساری، ایران

3 استاد، مرکز تحقیقات عفونی اطفال، دانشگاه علوم پزشکی مازندران، ساری، ایران

چکیده

مقدمه: عفونت‌های ناشی از باکتری‌های گرم منفی مقاوم به چندین آنتی‌بیوتیک (Multi drug resistant یا MDR) در حال افزایش می‌باشد. باکتریوفاژها به عنوان گزینه‌ی درمانی جایگزین، جهت درمان عفونت‌های ناشی از باکتری‌های مقاوم به آنتی‌بیوتیک‌ها پیشنهاد شده‌اند. تاکنون در منابع انگلیسی و فارسی از باکتریوفاژها به منظور درمان عفونت‌های ناشی از باکتری‌های گرم منفی در مطالعات حیوانی به خوبی بحث نشده است. پژوهش حاضر با هدف بررسی تأثیر باکتریوفاژها علیه عفونت‌های ناشی از باکتری‌های گرم منفی در شرایط In vivo انجام شد.روش‌ها: این تحقیق از نوع مروری سیستماتیک بود که در آن مقالات منتشر شده طی سال‌های 1983 تا 2018 در پایگاه‌های معتبر بین‌المللی Scopus، PubMed، Google Scholar و Web of Science جستجو گردید. مطالعاتی که دارای معیارهای ورود بودند، مورد بررسی قرار گرفت و داده‌ها با روش مروری برآورد گردید.یافته‌ها: 1310 مقاله در پایگاه‌های مورد نظر نمایش داده شد. پس از بررسی عناوین، 380 مقاله برگزیده شد. پس از مرور چکیده و حذف مطالعات تجربی و In vitro و انتخاب پژوهش‌های انگلیسی زبان که در شرایط In vivo انجام شده بود، 31 مقاله‌ی منتشر شده در بازه‌ی زمانی مورد نظر انتخاب گردید.نتیجه‌گیری: استفاده‌ی خوراکی، تزریقی و موضعی از باکتریوفاژها علیه عفونت‌های ناشی از باکتری‌های گرم منفی در مدل حیوانی مؤثر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Bacteriophages against Gram-Negative Bacteria Infections in Vivo: A Systematic Review

نویسندگان [English]

  • Golnar Rahimzadeh 1
  • Fereshteh Farshidi 2
  • Mohammad Sadegh Rezai 3
  • Shaghayegh Rezai 2
1 PhD Student, Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
2 Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
3 Professor, Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
چکیده [English]

Background: Infections caused by multidrug-resistant (MDR) Gram-negative bacteria are rising. Bacteriophages are suggested as an alternative treatment option for the treatment of antibiotic-resistant bacteria. Bacteriophages in treatment of Gram-negative bacterial infections is not well investigated in vivo. The aim of this study was to review systematically the studies on bacteriophages against infection caused by Gram-negative bacteria in vivo.Methods: This systematic review was done using electronic databases, including Scopus, PubMed, Google Scholar, and Web of science; the articles published from 1983 to 2018 were investigated. Studies meeting the inclusion criteria were selected, and the data were estimated using a review method.Findings: 1310 articles were indexed from which 380 were selected based on their abstracts. Then, some were excluded including clinical trials and in-vitro studies. Finally, experimental studies (n = 31), that met the inclusion criteria and were published in English, were selected.Conclusion: This review showed that bacteriophages are an effective treatment against n-vivo Gram-negative bacteria infections even be used orally, topically, or subcutaneously injected.

کلیدواژه‌ها [English]

  • Bacteriophage
  • Gram-negative bacteria
  • Infection
  • Systematic Review
  1. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010; 362(19): 1804-13.
  2. Menegueti MG, Canini SR, Bellissimo-Rodrigues F, Laus AM. Evaluation of Nosocomial Infection Control Programs in health services. Rev Lat Am Enfermagem 2015; 23(1): 98-105.
  3. Abedon ST, Thomas-Abedon C, Thomas A, Mazure H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage 2011; 1(3): 174-8.
  4. Rahimzadeh G, Saeedi M, Farshidi F, Rezai M S. Phage therapy in treatment of gram-negative bacterial infections: A systematic review. J Mazandaran Univ Med Sci 2018; 28(165): 203-12. [In Persian].
  5. Hanlon GW. Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 2007; 30(2): 118-28.
  6. Sulakvelidze A. Bacteriophage: A new journal for the most ubiquitous organisms on Earth. Bacteriophage 2011; 1(1): 1-2.
  7. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28(2): 127-81.
  8. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brussow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol 2003; 6(4): 417-24.
  9. Rahimzadeh G, Gill P, Rezai MS. Characterization and lytic activity of methicillin-resistant Staphylococcus aureus (MRSA) phages isolated from NICU. Australas Med J 2016; 9(6): 169-75.
  10. Rahimzadeh G, Gill P, Rezai M S. Characterization of methicillin-resistant Staphylococcus aureus (MRSA) phages from sewage at a tertiary pediatric hospital. Arch Pediatr Infect Dis 2017; 5(1): e39615.
  11. Rahimzadeh G, Gill P, Rezai MS. Ultra structural characteristics of methicillin resistant Staphylococcus aureus cell wall after affecting with lytic bacteriophages using atomic force microscopy. Iran J Basic Med Sci 2019; 22(3): 290-5.
  12. Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, et al. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol 2018; 169(9): 531-9.
  13. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 2010; 201(7): 1096-104.
  14. Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 2011; 55(4): 1358-65.
  15. Kumari S, Harjai K, Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 2011; 60(Pt 2): 205-10.
  16. Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS One 2011; 6(2): e16963.
  17. Vinodkumar CS, Neelagund YF, Kalsurmath S. Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J Commun Dis 2005; 37(1): 18-29.
  18. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med 2006; 17(2): 309-17.
  19. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, et al. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum beta-lactamase-producing Escherichia coli bacteremia. Int J Mol Med 2006; 17(2): 347-55.
  20. Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 1982; 128(2): 307-18.
  21. Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 1983; 129(8): 2659-75.
  22. D'Herelle F. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. 1917. Res Microbiol 2007; 158(7): 553-4.
  23. Eaton MD, Bayne-Jones S. Bacteriophage therapy: Review of the principles and results of the use of bacteriophage in the treatment of infections. JAMA 1934; 103(23): 1769-76.
  24. Nale JY, Chutia M, Carr P, Hickenbotham PT, Clokie MR. 'Get in Early'; Biofilm and wax moth (Galleria mellonella) Models reveal new insights into the therapeutic potential of clostridium difficile bacteriophages. Front Microbiol 2016; 7: 1383.
  25. Fiorentin L, Vieira ND, Barioni W. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol 2005; 34(3): 258-63.
  26. Miller RW, Skinner EJ, Sulakvelidze A, Mathis GF, Hofacre CL. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis 2010; 54(1): 33-40.
  27. Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 2007; 51(2): 446-52.
  28. Nikkhahi F, Soltan Dallal MM, Alimohammadi M, Rahimi FA, Rajabi Z, Fardsanei F, et al. Phage therapy: Assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice. Gastroenterol Hepatol Bed Bench 2017; 10(2): 131-6.
  29. Barrow P, Lovell M, Berchieri A. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol 1998; 5(3): 294-8.
  30. Danelishvili L, Young LS, Bermudez LE. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium. Microb Drug Resist 2006; 12(1): 1-6.
  31. Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J. Experimental phage therapy for Burkholderia pseudomallei infection. PLoS One 2016; 11(7): e0158213.
  32. Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U. Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 2004; 48(10): 3817-22.
  33. Heo YJ, Lee YR, Jung HH, Lee J, Ko G, Cho YH. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother 2009; 53(6): 2469-74.
  34. Jeon J, Ryu CM, Lee JY, Park JH, Yong D, Lee K. In vivo application of bacteriophage as a potential therapeutic agent to control OXA-66-like carbapenemase-producing Acinetobacter baumannii strains belonging to sequence type 357. Appl Environ Microbiol 2016; 82(14): 4200-8.
  35. Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis 2014; 210(1): 72-8.
  36. Kumari S, Harjai K, Chhibber S. Efficacy of bacteriophage treatment in murine burn wound infection induced by klebsiella pneumoniae. J Microbiol Biotechnol 2009; 19(6): 622-8.
  37. Levin BR, Bull JJ. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am Nat 1996; 147(6): 881-98.
  38. Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, et al. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 2015; 59(4): 1983-91.
  39. Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol 2018; 18(1): 97.
  40. Vinodkumar CS, Kalsurmath S, Neelagund YF. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 2008; 51(3): 360-6.
  41. Yin S, Huang G, Zhang Y, Jiang B, Yang Z, Dong Z, et al. Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem 2017; 44(6): 2337-45.
  42. Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato S, Morita T, et al. Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS One 2012; 7(10): e47742.
  43. Khairnar K, Raut MP, Chandekar RH, Sanmukh SG, Paunikar WN. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Vet Res 2013; 9: 264.
  44. Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, et al. Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 2012; 3(2): e00029-12.
  45. Cha K, Oh HK, Jang JY, Jo Y, Kim WK, Ha GU, et al. Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front Microbiol 2018; 9: 696.