نقش عوامل رونویسی در تنظیم توسعه و تمایز سلول‌های شبکیه‌ی عصبی

نوع مقاله : Review Article

نویسندگان

1 کارشناس ارشد، مرکز تحقیقات بیماری‌های ارثی کودکان و پژوهشکده‌ی پیشگیری اولیه از بیماری‌های غیر واگیر و گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، مرکز تحقیقات بیماری‌های ارثی کودکان و پژوهشکده‌ی پیشگیری اولیه از بیماری‌های غیر واگیر و گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

شبکیه‌ی عصبی بخشی از Diencephalon است که به دلیل ساختار به نسبت ساده، به عنوان یک مدل مناسب برای مطالعه‌ی مکانیسم‌های ملکولی توسعه‌ی سیستم عصبی مرکزی کاربرد دارد. حس بینایی، حاصل عملکرد شش نوع نورون است که در ساختار شبکیه‌ی عصبی سازمان‌دهی شده است. پیدایش شبکیه‌ی عصبی، حاصل تکثیر یک سلول پیش‌ساز مشترک در لایه‌ی داخلی جام بینایی است که تحت عوامل متفاوت در یک شیوه‌ی وابسته به زمان و حفاظت شده در پستانداران، صلاحیت تمایز به سرنوشت‌های مختلف سلولی را کسب می‌کند. تخریب و فقدان عملکرد سلول‌های شبکیه در بیماری‌های مختلف شبکیه ایجاد می‌شود و فرایند بینایی را در انسان دچار اختلال می‌سازد. عدم بازسازی سلول‌های عصبی آسیب دیده‌ی شبکیه در پستانداران از جمله انسان، یک مشکل شناخته شده است؛ در دهه‌های اخیر، طیف وسیعی از تحقیقات در زمینه‌ی چشم به بررسی امکان جایگزینی سلول‌های شبکیه اختصاص داده شده و تلاش‌های زیادی برای درمان این بیماری‌ها انجام شده است. مطالعه و شناسایی عوامل رونویسی دخیل در تمایز نورونی، می‌تواند ابزار سودمندی در ژن درمانی با هدف بازسازی نورون‌های شبکیه در آینده‌ی نزدیک فراهم سازد.

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Transcription Factors in Regulating the Development and Differentiation of Neural Retina Cells

نویسندگان [English]

  • Razeih Heidari 1
  • Fatemeh Nazemroaya 1
  • Majid Kheirollahi 2
1 Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease AND Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease AND Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Neural retina is the part of the diencephalon and because of the relatively simple structure in known as a suitable model for studying the molecular mechanisms of the central nervous system. Visual perception is the result of the function of six types of neurons organized in the structure of the neural retina. Neural retina develops via the proliferation of a common precursor cell in the inner layer of the optic cup. Retinal progenitor cell acquires the competent to differentiate into different cell fates by different factors in a time-dependent and protected manner in the mammals. Destruction and loss of these cells in the retina occurs in various retinal diseases and impairs the process of human vision. Lack of reconstruction of damaged nerve cells in the retina of mammals, including humans is a noted problem; and in recent decades, a wide range of research in the eye field allocated the possibility of replacing the retinal cells and many efforts is made to treat these diseases. Study and identifying the transcription factors involved in neuronal differentiation can provide a useful tool for gene therapy aiming to regenerate retinal neurons in the near future.

کلیدواژه‌ها [English]

  • Transcription factor
  • Neural retina
  • Retinal progenitor cells
  1. Martinez-Morales JR, Rodrigo I, Bovolenta P. Eye development: a view from the retina pigmented epithelium. Bioessays 2004; 26(7): 766-77.
  2. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005; 85(3): 845-81.
  3. Harada T, Harada C, Parada LF. Molecular regulation of visual system development: more than meets the eye. Genes Dev 2007; 21(4): 367-78.
  4. Marquardt T, Gruss P. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 2002; 25(1): 32-8.
  5. Wang JC, Harris WA. The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification. Dev Biol 2005; 285(1): 101-15.
  6. Graven SN, Browne JV. Visual development in the human fetus, infant, and young child. Newborn Infant Nurs Rev 8(4): 194-201.
  7. Byerly MS, Blackshaw S. Vertebrate retina and hypothalamus development. Wiley Interdiscip Rev Syst Biol Med 2009; 1(3): 380-9.
  8. Martinez-Morales JR, Del BF, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J. Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell 2005; 8(4): 565-74.
  9. Nguyen M, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 2000; 127(16): 3581-91.
  10. Ohsawa R, Kageyama R. Regulation of retinal cell fate specification by multiple transcription factors. Brain Res 2008; 1192: 90-8.
  11. Hatakeyama J, Kageyama R. Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 2004; 15(1): 83-9.
  12. Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T. Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 1998; 125(23): 4821-33.
  13. Yang Z, Ding K, Pan L, Deng M, Gan L. Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol 2003; 264(1): 240-54.
  14. Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 2003; 22(4): 483-543.
  15. Riesenberg AN, Le TT, Willardsen MI, Blackburn DC, Vetter ML, Brown NL. Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 2009; 47(3): 175-87.
  16. Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, et al. Requirement for math5 in the development of retinal ganglion cells. Genes Dev 2001; 15(1): 24-9.
  17. Qiu F, Jiang H, Xiang M. A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci 2008; 28(13): 3392-403.
  18. Rowan S, Chen CM, Young TL, Fisher DE, Cepko CL. Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development 2004; 131(20): 5139-52.
  19. Dorval KM, Bobechko BP, Ahmad KF, Bremner R. Transcriptional activity of the paired-like homeodomain proteins CHX10 and VSX1. J Biol Chem 2005; 280(11): 10100-8.
  20. Livne-Bar I, Pacal M, Cheung MC, Hankin M, Trogadis J, Chen D, et al. Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. Proc Natl Acad Sci USA 2006; 103(13): 4988-93.
  21. Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol 2008; 507(5): 1795-810.
  22. Bramblett DE, Pennesi ME, Wu SM, Tsai MJ. The transcription factor Bhlhb4 is required for rod bipolar cell maturation. Neuron 2004; 43(6): 779-93.
  23. Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C, Bloomfield SA, et al. Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Proc Natl Acad Sci U S A 2004; 101(6): 1754-9.
  24. Hayashi T, Huang J, Deeb SS. Expression of rinx/vsx1 during postnatal eye development in cone-bipolar, differentiating ganglion, and lens fiber cells. Jpn J Ophthalmol 2005; 49(2): 93-105.
  25. Ohtoshi A, Wang SW, Maeda H, Saszik SM, Frishman LJ, Klein WH, et al. Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1. Curr Biol 2004; 14(6): 530-6.
  26. Cherry TJ, Trimarchi JM, Stadler MB, Cepko CL. Development and diversification of retinal amacrine interneurons at single cell resolution. Proc Natl Acad Sci USA 2009; 106(23): 9495-500.
  27. Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R. Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 2002; 129(4): 831-42.
  28. Gouge A, Holt J, Hardy AP, Sowden JC, Smith HK. Foxn4--a new member of the forkhead gene family is expressed in the retina. Mech Dev 2001; 107(1-2): 203-6.
  29. Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 2004; 43(6): 795-807.
  30. Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, et al. Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 2006; 133(22): 4439-50.
  31. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 2007; 134(6): 1151-60.
  32. Deeb SS. Genetics of variation in human color vision and the retinal cone mosaic. Curr Opin Genet Dev 2006; 16(3): 301-7.
  33. Roberts MR, Hendrickson A, McGuire CR, Reh TA. Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest Ophthalmol Vis Sci 2005; 46(8): 2897-904.
  34. Henderson RH, Williamson KA, Kennedy JS, Webster AR, Holder GE, Robson AG, et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis 2009; 15: 2442-7.
  35. Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 2010; 11(8): 563-76.
  36. Hennig AK, Peng GH, Chen S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res 2008; 1192: 114-33.
  37. Furukawa T, Morrow EM, Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 1997; 91(4): 531-41.
  38. Peng GH, Chen S. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 2007; 16(20): 2433-52.
  39. Oh EC, Cheng H, Hao H, Jia L, Khan NW, Swaroop A. Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors. Brain Res 2008; 1236: 16-29.
  40. Cheng H, Khanna H, Oh EC, Hicks D, Mitton KP, Swaroop A. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum Mol Genet 2004; 13(15): 1563-75.
  41. Haider NB, Mollema N, Gaule M, Yuan Y, Sachs AJ, Nystuen AM, et al. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction. Exp Eye Res 2009; 89(3): 365-72.
  42. Srinivas M, Ng L, Liu H, Jia L, Forrest D. Activation of the blue opsin gene in cone photoreceptor development by retinoid-related orphan receptor beta. Mol Endocrinol 2006; 20(8): 1728-41.
  43. Liu H, Etter P, Hayes S, Jones I, Nelson B, Hartman B, et al. NeuroD1 regulates expression of thyroid hormone receptor 2 and cone opsins in the developing mouse retina. J Neurosci 2008; 28(3): 749-56.
  44. Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 2001; 27(1): 94-8.
  45. Fischer AJ, Reh TA. Potential of Muller glia to become neurogenic retinal progenitor cells. Glia 2003; 43(1): 70-6.
  46. Jadhav AP, Roesch K, Cepko CL. Development and neurogenic potential of Muller glial cells in the vertebrate retina. Prog Retin Eye Res 2009; 28(4): 249-62.
  47. Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 2003; 76(4): 397-403.
  48. Radtke ND, Seiler MJ, Aramant RB, Petry HM, Pidwell DJ. Transplantation of intact sheets of fetal neural retina with its retinal pigment epithelium in retinitis pigmentosa patients. Am J Ophthalmol 2002; 133(4): 544-50.
  49. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 2009; 106(39): 16698-703.
  50. Bi YY, Feng DF, Pan DC. Stem/progenitor cells: a potential source of retina-specific cells for retinal repair. Neurosci Res 2009; 65(3): 215-21.