Next-Generation Sequencing and its Applications

Document Type : Review Article

Authors

1 MSc Student, Pediatric Inherited Disease Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases AND Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 PhD Student, Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

DNA sequencing is an approach exploited to determine the sequence of a DNA molecule. It includes any method or technology used to identify and determine the order of the four bases of adenine, guanine, cytosine, and thymine in a strand of DNA. DNA sequencing might be used to determine the sequence of individual genes, larger genetic regions, full chromosomes, or entire genomes. Traditional sequencing methods are mainly based on the original Sanger sequencing technique which makes them very expensive and low-throughput; thus, they do not meet the needs of researchers. Consequently, with the considerable advances in molecular biology and the high demand for low-cost sequencing has encouraged the development of high-throughput sequencing (or next-generation sequencing) technologies that parallelize the sequencing process, producing thousands or millions of sequences concurrently. Next-generation sequencing enable us to rapidly sequence a large piece of DNA which could span the whole genome with the latest instruments capable of producing gigabases of data in one isolated sequencing run. Next-generation sequencing platforms have a wide variety of applications, such as whole-genome sequencing, de novo sequencing, RNA sequencing (for applications such as transcriptomics and small RNA analysis), methylation analysis, and protein-nucleic acid interaction analysis.

Keywords


  1. Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 1944; 79(2): 137-58.
  2. Watson JD, Crick FH. Molecular structure of nucleic acids; A structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737-8.
  3. Church G, Gilbert WC. Genomic sequencing. Proc Natl Acad Sci USA 1984; 81(7): 1991-5.
  4. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA 1977; 74(2): 560-4.
  5. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74(12): 5463-7.
  6. Dovichi NJ. DNA sequencing by capillary electrophoresis. Electrophoresis 1997; 18(12-13): 2393-9.
  7. Parker LT, Zakeri H, Deng Q, Spurgeon S, Kwok PY, Nickerson DA. AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns. Biotechniques 1996; 21(4): 694-9.
  8. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008; 9: 387-402.
  9. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008; 26(10): 1135-45.
  10. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012; 2012: 251364.
  11. Maricic T, Paabo S. Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands. Biotechniques 2009; 46(1): 51-7.
  12. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science 1998; 281(5375): 363, 365.
  13. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007; 8(7): R143.
  14. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009; 25(4): 195-203.
  15. Liu L, Hu N, Wang B, Chen M, Wang J, Tian Z, et al. A brief utilization report on the Illumina HiSeq 2000 sequencer. Mycology 2011; 2(3): 169-91.
  16. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012; 13: 341.
  17. Daum LT, Rodriguez JD, Worthy SA, Ismail NA, Omar SV, Dreyer AW, et al. Next-generation ion torrent sequencing of drug resistance mutations in Mycobacterium tuberculosis strains. J Clin Microbiol 2012; 50(12): 3831-7.
  18. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett 2013; 340(2): 284-95.
  19. Kaiser J. A Plan to Capture Human Diversity in 1000 Genomes. Science 2008; 319(5862): 395.
  20. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467(7319): 1061-73.
  21. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods 2010; 7(2): 111-8.
  22. Zhang W, Cui H, Wong LJ. Application of next generation sequencing to molecular diagnosis of inherited diseases. Top Curr Chem 2014; 336: 19-45.
  23. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 2011; 29(10): 908-14.
  24. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem 2014; 60(9): 1192-9.
  25. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 2006; 295(12): 1379-88.
  26. Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev 2006; 16(6): 545-52.
  27. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 2008; 18(12): 2024-33.
  28. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 57-63.
  29. Pease J, Sooknanan R. A rapid, directional RNA-seq library preparation workflow for Illumina[reg] sequencing. Nat Meth 2012; 9(3).
  30. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458(7239): 719-24.
  31. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7(4): 233-45.
  32. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 2009; 458(7234): 97-101.
  33. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC, et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res 2011; 21(1): 56-67.
  34. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 2011; 471(7338): 377-81.
  35. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 2012; 13(12): 840-52.
  36. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009; 10(10): 669-80.
  37. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57-74.
  38. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462(7271): 315-22.
  39. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005; 33(18): 5868-77.
  40. Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 2012; 7(4): 617-36.
  41. Tafe LJ. Targeted next-generation sequencing for hereditary cancer syndromes: A focus on lynch syndrome and associated endometrial cancer. J Mol Diagn 2015; 17(5): 472-82.
  42. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11(1): 31-46.
  43. Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J. The next-generation sequencing technology and application. Protein Cell 2010; 1(6): 520-36.
  44. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010; 1805(1): 105-17.
  45. Schubert C. Single-cell analysis: The deepest differences. Nature 2011; 480(7375): 133-7.
  46. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature 2011; 472(7341): 90-4.
  47. Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT, Jr. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril 2013; 99(5): 1377-84.
  48. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4(136): 136ra68.
  49. Mosallayi M, Salehi R. Fetal cells in maternalbBlood: Technical and clinical aspects. J Isfahan Med Sch 2015; 32(313): 2165-73. [In Persian].
  50. Shea JL, Diamandis EP, Hoffman B, Lo YM, Canick J, van den Boom D. A new era in prenatal diagnosis: the use of cell-free fetal DNA in maternal circulation for detection of chromosomal aneuploidies. Clin Chem 2013; 59(8): 1151-9.
  51. Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol 2013; 9: 640.
  52. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448(7153): 553-60.
  53. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 2004; 119(7): 1041-54.
  54. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, et al. Microbial population structures in the deep marine biosphere. Science 2007; 318(5847): 97-100.
  55. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, et al. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 2006; 7: 57.
  56. Barzon L, Lavezzo E, Costanzi G, Franchin E, Toppo S, Palu G. Next-generation sequencing technologies in diagnostic virology. J Clin Virol 2013; 58(2): 346-50.
  57. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet 2008; 24(3): 133-41.
  58. Johnsen JM, Nickerson DA, Reiner AP. Massively parallel sequencing: the new frontier of hematologic genomics. Blood 2013; 122(19): 3268-75.
  59. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2007; 2(12): e1326.
  60. Huang dW, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, et al. Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics 2009; Chapter 13: Unit.
  61. Li DK, Zhou Z, Miao M, He Y, Qing D, Wu T, et al. Relationship between urine bisphenol-A level and declining male sexual function. J Androl 2010; 31(5): 500-6.
  62. Denver DR, Dolan PC, Wilhelm LJ, Sung W, Lucas-Lledo JI, Howe DK, et al. A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci U S A 2009; 106(38): 16310-4.
  63. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008; 452(7184): 215-9.
  64. Costello AB. Getting the most from your analysis. Pan 2009; 12(2): 131-46.
  65. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 2006; 103(3): 626-31.
  66. Johnsen JM, Nickerson DA, Reiner AP. Massively parallel sequencing: the new frontier of hematologic genomics. Blood 2013; 122(19): 3268-75.
  67. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449(7164): 804-10.
  68. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59-65.