روش جدید آنالیز فونوکاردیوگرام به منظور غربالگری بخشی از بیماری‌های قلبی- عروقی با به کارگیری مدل یادگیری عمیق

نویسندگان

1 دانشجوی دکترای مهندسی پزشکی، گروه مهندسی پزشکی (بیوالکتریک)، کمیته‌ی تحقیقات دانشجویی، دانشکده‌ی فناوری‌های نوین در علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه مهندسی پزشکی (بیوالکتریک)، مرکز تحقیقات پردازش تصویر و سیگنال پزشکی، دانشکده‌ی فناوری‌های نوین در علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 کارشناسی ارشد، گروه مهندسی پزشکی (بیوالکتریک)، کمیته‌ی تحقیقات دانشجویی، دانشکده‌ی فناوری‌های نوین در علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دانشجوی دکترای گروه مهندسی پزشکی (بیوالکتریک)، کمیته‌ی تحقیقات دانشجویی، دانشکده‌ی فناوری‌های نوین در علوم پزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

5 دکترای مهندسی پزشکی، گروه مهندسی پزشکی (بیوالکتریک)، دانشکده‌ی فناوری‌های نوین در علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

6 استاد، گروه داخلی فوق تخصص قلب، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقاله پژوهشی




مقدمه: بیماری‌های قلبی- عروقی، یکی از علل اصلی مرگ و میر در سراسر جهان است. از این‌رو تشخیص زودهنگام بیماری‌های قلبی، ارزیابی سامانه‌ی قلبی- عروقی با استفاده از سمع قلب و آنالیز (Phonocardiogram) PCG روشی ارزان، غیرتهاجمی، سریع و غربالگری اتوماتیک بیماران قلبی- عروقی توسط آن در نواحی دور افتاده از اهمیت بسزایی برخوردار می‌باشد. هدف از این پژوهش، ارایه‌ی روشی جدید جهت غربالگری بیماران قلبی مبتنی بر پردازش سیگنال PCG است که در عین ارزان و سریع بودن، دارای صحت کافی باشد.
روش‌ها: در این مطالعه برای غربالگری 2062 سیگنال برچسب خورده‌ی PCG، با استخراج ویژگی‌های جدید و به کارگیری آن‌ها در شبکه‌های 1- رندوم فارست (random forest)، 2- کا نزدیک‌ترین همسایگی (K-nearest neighbors)، 3- درخت تصمیم‌گیری (decision tree)، 4- آنالیز افتراق خطی
(Linear discriminant analysis)، 5- رگرسیون لجستیک (logistic regression) و 6- شبکه‌ی عصبی عمیق (Deep Neural Network)، شش مدل مختلف ساخته شد و هر کدام از آن‌ها به روش اعتبارسنجی متقابل کا (10 = K) مورد ارزیابی قرار گرفت. دادگان تست به مدل‌های مذکور اعمال گردید و بر اساس خروجی آن‌ها سه شاخص صحت، حساسیت و ویژگی با هدف تدوین راهکاری نوین در غربالگری و تمایز بیماران قلبی از افراد سالم با استفاده از PCG محاسبه شد.
یافته‌ها: ارزیابی بر روی مدل‌های مذکور با محاسبه‌ی سه شاخص مذکور 5 بار تکرار و مقادیر میانگین و واریانس آن‌ها محاسبه گردید. بالاترین مقدار حساسیت مربوط به شبکه‌ی عصبی عمیق با مقدار حساسیت و ویژگی 14/0 ± 4/96 و صحت 11/0 ± 4/93 می‌باشد.
نتیجه‌گیری: تمایز ویژگی‌های جدید به همراه موفقیت شبکه‌ی عصبی عمیق، پیشنهادی، در تمایز بین PCG افراد سالم از بیماران، نشان‌دهنده‌ی کارآمد بودن الگوریتم پیشنهادی می‌باشد. با استفاده‌ی همزمان از چند طبقه‌بند با به کارگیری قاعده‌ی رأی‌گیری می‌توان روش را ارتقا بخشید.
 

کلیدواژه‌ها


عنوان مقاله [English]

A New Approach of Phonocardiogram Analysis for Screening Some of Cardio-vascular Diseases Based on Deep Learning

نویسندگان [English]

  • Ehsan Mohammadi 1
  • Saeed Kermani 2
  • Mahdi Nourian-Zavareh 3
  • Alale Zare 4
  • Hamed Aghapanah-Roudsari 1
  • Maryam Samieinasab 5
  • Hamid Sanei 6
1 PhD Student, Department of Bioelectrics and Biomedical Engineering, Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 MSc Graduate, Department of Bioelectrics and Biomedical Engineering, Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 MSc Graduate, Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5 PhD Student, Department of Bioelectrics and Biomedical Engineering, Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
6 Professor of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Cardiovascular diseases are one of the leading causes of death worldwide. Therefore, early diagnosis of heart disease, evaluation of cardiovascular system using cardiac hearing and Phonocardiogram (PCG) analysis which is a low cost, non-invasive, rapid method, and automatic screening of cardiovascular patients in remote areas is crucial. The aim of this study is to present a new method for screening heart patients based on signal processing (PCG) that is cheap and fast and has sufficient accuracy.
Methods: In this study, for screening 2062 labeled PCG signals, by extracting new features and applying them in 1- Random forest network 2- K-nearest neighbors 3- Decision tree 4- Linear discriminant analysis 5- Logistic regression and 6- Deep neural network, six different models were constructed and each of them was evaluated by k fold cross-validation method (K = 10). The test data were applied to the mentioned models and based on the outputs of these models, three indicators of accuracy, sensitivity and specificity were calculated. We showed and developed a new solution in differentiating and screening some heart patients from healthy individuals using PCG analysis.
Findings: Evaluation on the mentioned models was calculated by the three indicators, repeated 5 times and their mean and variance values were calculated. The highest sensitivity value is related to deep neural network (DNN) with sensitivity of 96.4 ± 0.14 and accuracy of 93.4 ± 0.11.
Conclusion: The new differential features along with the success of the proposed deep neural network in differentiating and screening between PCGs of healthy individuals and heart patients, shows the efficiency of the proposed algorithm. This method can be further improved with simultaneous multimodal classifier and the application of the voting rule.
 

کلیدواژه‌ها [English]

  • Cardiovascular diagnostic technic
  • Deep learning
  • Diagnostic screening programs
  • Cardiovascular diseases
  1. Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res 2016; 113(Pt A): 600-9.
  2. Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas 2016; 37(12): 2181-213.
  3. Ghosh SK, Ponnalagu RN, Tripathy RK, Acharya UR. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals. Comput Biol Med 2020; 118: 103632.
  4. El Badlaoui O, Benba A, Hammouch A. Novel PCG analysis method for discriminating between abnormal and normal heart sounds. IRBM 2020; 41(4):
    223-8.
  5. Nourian-Zavareh M, Kermani S, Hashemi-Jazi M, Samieinasab M. Estimation and evaluation of new features from phonocardiogram for detecting cardiovascular abnormalities. J Isfahan Med Sch 2019; 36(506): 1444-9. [In Persian].
  6. Springer DB, Tarassenko L, Clifford GD. Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng 2016; 63(4): 822-32.
  7. Pérez-Guzmán RE, García-Bermúdez R, Rojas-Ruiz F, Céspedes-Pérez A, Ojeda-Riquenes Y. Evaluation of algorithms for automatic classification of heart sound signals. Proceeding of the International Conference on Bioinformatics and Biomedical Engineering. 01 April 2017; Basel, Switzerland: Springer Nature. p. 536-45.
  8. Schmidt SE, Holst-Hansen C, Graff C, Toft E, Struijk JJ. Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol Meas 2010; 31(4): 513-29.
  9. Randhawa SK, Singh M. Classification of heart
    sound signals using multi-modal features. Procedia Comput Sci 2015; 58: 165-71.
  10. Singh M, Cheema A. Heart sounds classification using feature extraction of phonocardiography signal. Int J Comput Appl 2013; 77(4): 13-7.
  11. Clifford GD, Liu C, Moody B, Millet J, Schmidt S, Li Q, et al. Recent advances in heart sound analysis. Physiol Meas 2017; 38(8): E10-25.
  12. Svetnik V, Liaw A, Tong C, Christopher Culberson J, Sheridan RP, Feuston BP. Random forest: A classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 2003; 43(6): 1947-58.
  13. Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 1998; 20(8): 832-44.
  14. Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 1991; 21(3): 660-74.
  15. Laaksonen J, Oja E. Classification with learning k-nearest neighbors. Proceedings of the International Conference on Neural Networks (ICNN’96); 06 Aug 2002. Washington, DC: IEEE. p. 1480-3.
  16. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 1992; 46(3): 175-85.
  17. Tharwat A. Linear vs. quadratic discriminant analysis classifier: a tutorial. Int J Appl Pattern Recognit 2016; 3(2): 145-80.
  18. Ford I, McLachlan GJ. Discriminant analysis and statistical pattern recognition. J R Stat Soc Ser A (Statistics Soc) 1993; 156(2): 327-8.
  19. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002; 35(5-6): 352-9.