بررسی میزان اشعه‌ی X دریافتی پرسنل بیهوشی در هنگام استفاده از فلورسکوپی در اعمال جراحی اورتوپدی

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 استادیار، گروه بیهوشی و مراقبت‌های ویژه، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، گروه بیهوشی و مراقبت‌های ویژه، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 استاد، گروه بیهوشی و مراقبت‌های ویژه، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دانشجوی پزشکی، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: نظر به گسترش روزافزون استفاده از رادیوگرافی و دستگاه رادیوگرافی C-Arm در اتاق‌های عمل ارتوپدی و میزان پرتوگیری قابل توجه متخصصین ارتوپدی و گاهی متخصصین بیهوشی، بررسی میزان اشعه‌ی جذبی این افراد، کادر آموزشی و پرسنل همراه آن‌ها و مقایسه‌ی آن با حد دز تعیین شده توسط کمیته‌ی بین‌المللی محافظت در برابر اشعه (ICRP یا International Commission on Radiological Protection) امری ضروری به نظر می‌رسد.روش‌ها: به منظور تعیین دز جذبی، متخصصین ارتوپدی و بیهوشی و دستیاران و پرسنل همراه آن‌ها در اتاق عمل بیمارستان الزهرای (س) اصفهان، مورد بررسی قرار گرفتند. جهت تعیین میزان دز جذبی، از دزیمترهای ترمولومینسانس 4CaSo کارتی، که دارای دقت و حساسیت زیادی هستند، استفاده گردید. بدین منظور، برای هر شخص سه عدد دزیمتر حساس به حرارت (TLD یا Thermo luminescence dosimeter) یکی در محل گردن و در روی تیروئید، دیگری در ناحیه‌ی سینه و سومی در ناحیه‌ی گنادها به مدت یک ماه نسب گردید و میانگین دز جذبی در این سه محل حساس بدن به دست آمد. جهت خواندن دزیمترها از دستگاه خواننده‌ی ترمولومینسانس (Solaro2A TLD Reader) استفاده شد.یافته‌ها: میانگین دز دریافتی ماهانه برای متخصص ارتوپدی در محل‌های مختلف متفاوت به دست آمد که در تمام موارد بیشتر از میزان جذبی توسط تیم بیهوشی بود. میانگین دز دریافتی متخصص ارتوپدی 24، دستیار وی 26، متخصص بیهوشی 16 و دستیار بیهوشی 11 میلی‌راد بود. میانگین دز دریافتی در هر عمل جراحی برای گروه ارتوپدی در محل تیروئید و در محل گنادها همواره بیشتر از بقیه‌ی افراد بود. با استفاده از آزمون t و با احتمال 90 درصد، می‌توان دریافت که میانگین دز دریافتی ماهانه و دز در هر عمل ارتوپدی در محل تیروئید در هر فرد مورد بررسی، بیشتر از دز دریافتی در محل گنادها بوده است.نتیجه‌گیری: میانگین دز دریافتی ماهانه در هر عمل جراحی ارتوپدی در متخصص ارتوپدی و دستیار وی، بیشتر از سایر شرکت کنندگان در مطالعه بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Occupational Radiation Exposure in Anesthesia Personal from C-Arm Fluoroscopy during Orthopedic Surgical Procedures

نویسندگان [English]

  • Daruosh Moradi-Farsani 1
  • Khosrou Naghibi 2
  • Kamran Montazeri 3
  • Mitra Lotfollahi 4
1 Assistant Professor, Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Professor, Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Student of Medicine, School of Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: The present study aimed to evaluate and analyze the amount of radiation received by anesthesiologists and anesthesia personal in Alzahra Hospital, Isfahan, Iran, using standard precautionary measures, to assess determinants for personal receiving high doses during orthopedic surgeries.Methods: Ten people were included in a three month prospective study for radiation exposure measurement with adequate protection measures in all procedures requiring C-Arm fluoroscopy. Each person was provided with three Thermo Luminescent Dosimeter (TLD) badges which were tagged at the levels of neck, chest and gonads. Operating and exposure times of each procedure were recorded. Exposure dose of each badge at the end of the study was obtained and the results were analyzed. To measure dose, TLD cards containing CaS04 detectors were used. To read the data from TLDs, a TLD reader (Solaro2A) was used.Findings: Mean radiation exposure to all the parts were well within permissible limits. There was a significantly positive correlation between the exposure time and the exposure dose for the orthopedic surgeon (r = 0.647; P < 0.01) and orthopedic residents (r = 0.49; P < 0.05). The orthopedic surgeon and residents had the maximum exposure overall. For the group of anesthetist, anesthesia resident and anesthesia nurse, the mean radiation exposure was less than the others. It was founded that the mean of absorbed dose for each fluroscopy on thyroid was 5.21 ± 2.56 mrad for the orthopedic surgeon, 1.13 ± 1.11 mrad for anesthesiologist, 1.22 ± 1.19 mrad for anesthesia resident and 1.39 ± 1.33 mrad for anesthesia personnel.Conclusion: The mean exposure doses to all parts of the body of anesthetist and co-workers were well within the permissible limits. It is thus desirable that radiation safety precautions should be taken and exposures should be regularly monitored with at least one dosimeter for monitoring the whole-body dose.

کلیدواژه‌ها [English]

  • Image intensifiers
  • Radiation hazards
  • Radiation exposure
  • Orthopedic surgeon
  1. Theocharopoulos N, Perisinakis K, Damilakis J, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N. Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Joint Surg Am 2003; 85-A(9): 1698-703.
  2. Jain JK,Sen RK, Bansal SC, Nagi ON. Image intensifier and orthopedic surgeon-current concept review. Indian J Orthop 2001; 35(2): 13-9.
  3. Singer G. Occupational radiation exposure to the surgeon. J Am Acad Orthop Surg 2005; 13(1): 69-76.
  4. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007; 357(22): 2277-84.
  5. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380(9840): 499-505.
  6. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 2013; 346: f2360.
  7. Badman BL, Rill L, Butkovich B, Arreola M, Griend RA. Radiation exposure with use of the mini-C-arm for routine orthopaedic imaging procedures. J Bone Joint Surg Am 2005; 87(1): 13-7.
  8. Theocharopoulos N, Damilakis J, Perisinakis K, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N. Image-guided reconstruction of femoral fractures: is the staff progeny safe? Clin Orthop Relat Res 2005; (430): 182-8.
  9. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007; 37(2-4): 1-332.
  10. Herscovici D, Sanders RW. The effects, risks, and guidelines for radiation use in orthopaedic surgery. Clin Orthop Relat Res 2000; (375): 126-32.
  11. Broder J, Fordham LA, Warshauer DM. Increasing utilization of computed tomography in the pediatric emergency department, 2000-2006. Emerg Radiol 2007; 14(4): 227-32.
  12. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013; 167(8): 700-7.
  13. Botchu R, Ravikumar K. Radiation exposure from fluoroscopy during fixation of hip fracture and fracture of ankle: Effect of surgical experience. Indian J Orthop 2008; 42(4): 471-3.
  14. Brateman L. Radiation safety considerations for diagnostic radiology personnel. Radiographics 1999; 19(4): 1037-55.
  15. Mastrangelo G, Fedeli U, Fadda E, Giovanazzi A, Scoizzato L, Saia B. Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Lond) 2005; 55(6): 498-500.
  16. Shahi V, Brinjikji W, Cloft HJ, Thomas KB, Kallmes DF. Trends in CT Utilization for Pediatric Fall Patients in US Emergency Departments. Acad Radiol 2015; 22(7): 898-903.
  17. Alonso JA, Shaw DL, Maxwell A, McGill GP, Hart GC. Scattered radiation during fixation of hip fractures. Is distance alone enough protection? J Bone Joint Surg Br 2001; 83(6): 815-8.
  18. Oddy MJ, Aldam CH. Ionising radiation exposure to orthopaedic trainees: the effect of sub-specialty training. Ann R Coll Surg Engl 2006; 88(3): 297-301.
  19. Lester JD, Hsu S, Ahmad CS. Occupational hazards facing orthopedic surgeons. Am J Orthop (Belle Mead NJ) 2012; 41(3): 132-9.
  20. Palacio EP, Ribeiro AA, Gavassi BM, Di Stasi GG, Galbiatti JA, Junior AD, et al. Exposure of the surgical team to ionizing radiation during orthopedic surgical procedures. Rev Bras Ortop 2014; 49(3): 227-32.
  21. Townsend BA, Callahan MJ, Zurakowski D, Taylor GA. Has pediatric CT at children's hospitals reached its peak? AJR Am J Roentgenol 2010; 194(5): 1194-6.
  22. Menoch MJ, Hirsh DA, Khan NS, Simon HK, Sturm JJ. Trends in computed tomography utilization in the pediatric emergency department. Pediatrics 2012; 129(3): e690-e697.
  23. Neff LP, Ladd MR, Becher RD, Jordanhazy RA, Gallaher JR, Pranikoff T. Computerized tomography utilization in children with appendicitis-differences in referring and children's hospitals. Am Surg 2011; 77(8): 1061-5.
  24. Strauss KJ, Kaste SC. The ALARA (as low as reasonably achievable) concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients--a white paper executive summary. Pediatr Radiol 2006; 36(Suppl 2): 110-2.
  25. Athey J, Dean JM, Ball J, Wiebe R, Melese-d'Hospital I. Ability of hospitals to care for pediatric emergency patients. Pediatr Emerg Care 2001; 17(3): 170-4.
  26. Goske MJ, Applegate KE, Boylan J, Butler PF, Callahan MJ, Coley BD, et al. The Image Gently campaign: working together to change practice. AJR Am J Roentgenol 2008; 190(2): 273-4.
  27. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL. Dose reduction in pediatric CT: a rational approach. Radiology 2003; 228(2): 352-60.
  28. Morgan HT. Dose reduction for CT pediatric imaging. Pediatr Radiol 2002; 32(10): 724-8.
  29. Amis ES, Jr. CT radiation dose: trending in the right direction. Radiology 2011; 261(1): 5-8.
  30. Gunn ML, Kohr JR. State of the art: technologies for computed tomography dose reduction. Emerg Radiol 2010; 17(3): 209-18.
  31. Borjesson J, Latifi A, Friman O, Beckman MO, Oldner A, Labruto F. Accuracy of low-dose chest CT in intensive care patients. Emerg Radiol 2011; 18(1): 17-21.
  32. Shenoy-Bhangle A, Nimkin K, Gee MS. Pediatric imaging: current and emerging techniques. J Postgrad Med 2010; 56(2): 98-102.
  33. Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, et al. Managing radiation use in medical imaging: a multifaceted challenge. Radiology 2011; 258(3): 889-905.
  34. Burr A, Renaud EJ, Manno M, Makris J, Cooley E, DeRoss A, et al. Glowing in the dark: time of day as a determinant of radiographic imaging in the evaluation of abdominal pain in children. J Pediatr Surg 2011; 46(1): 188-91.
  35. Katz SI, Saluja S, Brink JA, Forman HP. Radiation dose associated with unenhanced CT for suspected renal colic: impact of repetitive studies. AJR Am J Roentgenol 2006; 186(4): 1120-4.