تأثیر تمرینات HIIT بر تغییرات Pannexin-1،P2X7، NLRP-1 بافت قلب موش‌های صحرایی نر نژاد ویستار مبتلا به دیابت نوع 2

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 کارشناس ارشد، گروه فیزیولوژی ورزشی، دانشکده‌ی علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار، گروه فیزیولوژی ورزشی، دانشکده‌ی علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد، گروه فیزیولوژی ورزشی، دانشکده‌ی علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 استادیار، مرکز تحقیقات غدد و متابولیسم اصفهان، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقاله پژوهشی




مقدمه: هدف پژوهش حاضر، مطالعه‌ی تأثیر تمرینات HIIT بر تغییرات سطوح پروتئین‌های Pannexin-1، P2X7، NLRP-1 بافت قلب موش‌های صحرایی نر نژاد ویستار مبتلا به دیابت نوع 2 می‌باشد.
روش‌ها: در این مطالعه، تعداد 40 سر موش صحرایی نر 8 هفته‌ای از نژاد ویستار به طور تصادفی به چهار گروه سالم کنترل+سالم تمرین+دیابت تمرین+دیابت کنترل (10 = n) تقسیم شدند. به موش‌های گروه‌‌های مبتلا به دیابت به وسیله‌ی رژیم غذایی پرچرب و تزریق درون صفاقی استرپتوزوسین دیابت القا گردید. پس از آن برنامه‌ی تمرینات HIIT شامل 6 وهله 2 دقیقه‌ای تمرین با 80 درصد اوج سرعت در هفته اول بود که هر هفته 10 درصد به سرعت آن‌ها اضافه شد و تا 12 وهله در هفته‌ی هفتم و هشتم ادامه پیدا کرد. ۴8 ساعت پس از آخرین جلسه‌ی تمرین تحت شرایط استریل بافت قلب جدا گردید و با استفاده از روش وسترن‌بلات میزان سطوح پروتئین‌ مورد نظر اندازه‌گیری شد. از روش آماری one-way ANOVA و آزمون تعقیبی Tukey استفاده شد.
یافته‌ها: نتایج نشان داد، دیابت سبب افزایش معنی‌دار مقادیر پروتئین‌های Panexin-1، P2X7، NLRP-1 در بافت قلب موش‌های صحرایی مبتلا به دیابت نسبت به گروه سالم شد (0/5 ˂ P). همچنین مشخص شد، 8 هفته تمرین HIIT باعث کاهش معنی‌دار در مقادیر پروتئین‌های Panexin-1، P2X7، NLRP-1 در بافت قلب موش‌های صحرایی مبتلا به دیابت تمرین کرده نسبت به گروه دیابت کنترل شد (0/5 ˂ P).
نتیجه‌گیری: در نهایت می‌توان بیان کرد که تمرینات HIIT، نقش مفیدی در تنظیم سطح قند خون و مقادیر پروتئین‌های Pannexin-1، P2X7،NLRP-1  را در بافت قلب موش‌های صحرایی مبتلا به دیابت داشته و احتمالاً می‌تواند به عنوان یک راهبرد غیردارویی امیدوارکننده باشد.

تازه های تحقیق

علی اکبر علی زاده: Google Scholar, PubMed

امیرحسین احمدی رمضانی:  Google Scholar, PubMed

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of HIIT Exercises on the Changes of Pannexin-1, P2X7, and NLRP-1 in Heart Tissue of Male Wistar Rats with Type 2 Diabetes

نویسندگان [English]

  • Yasaman Rafiei 1
  • Aliakbar Alizadeh 2
  • Saeid Shakerian 3
  • Amirhossein Ramezani Ahmadi 4
1 MSc, Department of Sport Physiology, School of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Assistant Professor, Department of Sport Physiology, School of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Professor, Department of Sport Physiology, School of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 Assistant Professor, Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: The purpose of the present study is to study the effect of HIIT exercises on the changes in the levels of Pannexin-1, P2X7, and NLRP-1 proteins in the heart tissue of male Wistar rats with type 2 diabetes.
Methods: In this research, 40 8-week-old Wistar male rats were randomly divided into four groups: healthy control + healthy exercise + diabetes exercise + control diabetes (n = 10). Diabetic mice were induced by a high-fat diet and intraperitoneal injection of streptozocin. After that, the HIIT training program consisted of 6 2-minute sessions with 80% of the peak speed in the first week, which was increased by 10% every week and continued up to 12 sessions in the seventh and eighth weeks. 48 hours after the last training session, the heart tissue was isolated under sterile conditions, and the desired protein levels were measured using the western blot method. One-way statistical method and Tukey's post hoc test were used.
Findings: The results showed that diabetes caused a significant increase in the amount of Panexin-1, P2X7, and NLRP-1 proteins in the heart tissue of diabetic rats compared to the healthy group (P ˂ 0.5). It was also found that eight weeks of HIIT training caused a significant decrease in the amounts of Panexin-1, P2X7, and NLRP-1 proteins in the heart tissue of trained diabetic rats compared to the control diabetic group (P ˂ 0.5).
Conclusion: Finally, it can be stated that HIIT exercises have a beneficial role in regulating blood sugar levels and the amounts of Pannexin-1, P2X7, and NLRP-1 proteins in the heart tissue of diabetic rats and can probably be used as a Non-pharmacological strategy is promising.

کلیدواژه‌ها [English]

  • Diabetic cardiomyopathy
  • HIIT
  • Pannexin-1
  • P2X7
  • NLRP-1
  1. Wang T, Li J, Li H, Huang Z, Wang Y. Aerobic exercise inhibited p2x7 purinergic receptors to improve cardiac remodeling in mice with type 2 diabetes. Front Physiol 2022; 13: 828020.
  2. Cannon A, Handelsman Y, Heile M, Shannon M. Burden of illness in type 2 diabetes mellitus. J Manag Care Spec Pharm 2018; 24(9-a Suppl): S5-S13.
  3. Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab 2019; 10: 2042018819834869.
  4. Chen Y, Li X, Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 2020; 11: 491503.
  5. Wang J, Song Y, Wang Q, Kralik PM, Epstein PN. Causes and characteristics of diabetic cardiomyopathy. Rev Diabet Stud 2006; 3(3): 108-17.
  6. Surprenant A, Rassendren F, Kawashima E, North R, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996; 272(5262): 735-8.
  7. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 2002; 105(11): 1387-93.
  8. Isakson BE, Thompson RJ. Pannexin-1 as a potentiator of ligand-gated receptor signaling. Channels (Austin) 2014; 8(2): 118-23.
  9. Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, et al. Pannexin 1 channels control cardiomyocyte metabolism and neutrophil recruitment during non-ischemic heart failure. bioRxiv 2023: 2023-12.
  10. Li L, He L, Wu D, Chen L, Jiang Z. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47(6): 391-6.
  11. Locovei S, Bao L, Dahl G. Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 2006; 103(20): 7655-9.
  12. Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J Immunol 2008; 180(11): 7147-57.
  13. Gao H, Yin J, Shi Y, Hu H, Li X, Xue M, et al. Targeted P2X7R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction. Cardiovasc Ther 2017; 35(2): e12245.
  14. Mahdi A, Jiao T, Tratsiakovich Y, Yang J, Östenson C-G, Pernow J, et al. Altered purinergic receptor sensitivity in type 2 diabetes-associated endothelial dysfunction and Up4A-mediated vascular contraction. Int J Mol Sci 2018; 19(12): 3942.
  15. Zhou J, Tian G, Quan Y, Li J, Wang X, Wu W, et al. Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1β pathway. Oxid Med Cell Longev 2020; 7956274.
  16. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin‐1β. Exp Physiol 2013; 98(2): 462-72.
  17. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505(7484): 509-14.
  18. Tan C-C, Zhang J-G, Tan M-S, Chen H, Meng D-W, Jiang T, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation 2015; 12: 18.
  19. White CS, Lawrence CB, Brough D, Rivers‐Auty J. Inflammasomes as therapeutic targets for A lzheimer's disease. Brain Pathol 2017; 27(2): 223-34.
  20. Park M-K, Lee J-W, Lee J-C, Hwang S-J, Roh HW, Hong CH, et al. NLRP1 and NTN1, deregulated blood differentially methylated regions in mild cognitive impairment patients. J Mol Neurosci 2018; 66(4): 561-71.
  21. Meng X-F, Wang X-L, Tian X-J, Yang Z-H, Chu G-P, Zhang J, et al. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose. Mol Neurobiol 2014; 49(2): 673-84.
  22. Yaribeygi H, Butler AE, Sahebkar A. Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. J Cell Physiol 2019; 234(8): 12508-15.
  23. Mahmoud AM. Exercise amaliorates metabolic disturbances and oxidative stress in diabetic cardiomyopathy: possible underlying mechanisms. Adv Exp Med Biol 2017: 999: 207-30.
  24. Wang D, Wang H, Gao H, Zhang H, Zhang H, Wang Q, et al. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci 2020; 10: 28.
  25. Wang S-Q, Li D, Yuan Y. Long-term moderate intensity exercise alleviates myocardial fibrosis in type 2 diabetic rats via inhibitions of oxidative stress and TGF-β1/Smad pathway. The J Physiol Sci 2019; 69(6): 861-73.
  26. Sun Y, Ding S. NLRP3 inflammasome in diabetic cardiomyopathy and exercise intervention. Int J Mol Sci 2021; 22(24): 13228.
  27. Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 2006; 47(4): 693-700.
  28. Rami M, Rahdar S, Ahmadi Hekmatikar A, Awang Daud DM. Highlighting the novel effects of high-intensity interval training on some histopathological and molecular indices in the heart of type 2 diabetic rats. Front Endocrinol (Lausanne) 2023; 14: 1175585.
  29. Subhasree N, Kamella A, Kaliappan I, Agrawal A, Dubey GP. Antidiabetic and antihyperlipidemic activities of a novel polyherbal formulation in high fat diet/streptozotocin induced diabetic rat model. Indian J Pharmacol 2015; 47(5): 509-13.
  30. Henderson KK, Wagner H, Favret F, Britton SL, Koch LG, Wagner PD, et al. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J Appl Physiol (1985) 2002; 93(4): 1265-74.
  31. Zheng X, Qi Y, Bi L, Shi W, Zhang Y, Zhao D, et al. Effects of exercise on blood glucose and glycemic variability in type 2 diabetic patients with dawn phenomenon. Biomed Res Int 2020; 2020: 6408724.
  32. Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care 2005; 28(6): 1289-94.
  33. Röhling M, Herder C, Stemper T, Müssig K. Influence of acute and chronic exercise on glucose uptake. J Diabetes Res 2016; 2016: 2868652.
  34. Baroja-Mazo A, Barberà-Cremades M, Pelegrín P. The participation of plasma membrane hemichannels to purinergic signaling. Biochim Biophys Acta 2013; 1828(1): 79-93.
  35. He Y, Taylor N, Fourgeaud L, Bhattacharya A. The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammation 2017; 14(1): 135.
  36. Atianand MK, Rathinam VA, Fitzgerald KA. SnapShot: inflammasomes. Cell 2013; 153(1): 272-. e1.
  37. Hall JE. Pocket Companion to Guyton & Hall Textbook of Medical Physiology E-Book. Pocket Companion to Guyton & Hall Textbook of Medical Physiology E-Book. 13th ed. Philadelphia, PA: Saunders; 2015.
  38. Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11(1): 1-46.
  39. Stachon P, Heidenreich A, Merz J, Hilgendorf I, Wolf D, Willecke F, et al. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 2017; 135(25): 2524-33.
  40. Magitta N, Bøe Wolff A, Johansson S, Skinningsrud B, Lie B, Myhr K, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes Immun 2009; 10(2): 120-4.
  41. Cao L, Chen Y, Zhang Z, Li Y, Zhao P. Endoplasmic reticulum stress-induced NLRP1 inflammasome activation contributes to myocardial ischemia/reperfusion injury. Shock 2019; 51(4): 511-8.
  42. Lee J, Lee Y, LaVoy EC, Umetani M, Hong J, Park Y. Physical activity protects NLRP 3 inflammasome‐associated coronary vascular dysfunction in obese mice. Physiol Rep 2018; 6(12): e13738.
  43. Skaper SD, Debetto P, Giusti P. P2X7 receptors in neurological and cardiovascular disorders. Cardiovasc Psychiatry Neurol 2009; 2009: 861324.
  44. Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, et al. Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 2012; 287(34): 29184-93.
  45. Budai MM, Varga A, Milesz S, Tőzsér J, Benkő S. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol 2013; 56(4): 471-9.