مقایسه‌ی تأثیر دو عامل Transforming Growth Factor Beta1 (TGF-ß1) و پیاسکلیدین بر بیان ژن‌های کلاژن II، X و اگریکان در روند کندروژنز سلول‌های بنیادی مشتق از چربی انسان در داربست کامپوزیتی فیبرین آلژینات

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم تشریح، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، گروه علوم تشریح، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، گروه علوم تشریح، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: آسیب‌های بافت غضروف در کشورهای پیشرفته، مهم‌ترین علت ناتوانی در سالمندان است. علاوه بر آن، غضروف مفصلی توانایی محدودی در ترمیم دارد. روش‌های درمانی رایج قادر به ترمیم این آسیب‌ها نمی‌باشد؛ چرا که منجر به ایجاد بافت فیبروزی در غضروف می‌شوند. سلول درمانی، یکی از روش‌های درمان است که در آن، سلول‌های بنیادی با کمک مهندسی بافت می‌توانند به کندروسیت تمایز یابند و جهت دستیابی به این هدف، از عوامل رشد و داربست‌ها استفاده می‌شود. به دلیل هایپرتروفه شدن بافت غضروف و عدم پایداری داربست‌ها، ضرورت دستیابی به عوامل القا کننده و داربست مناسب احساس می‌گردد. بر اساس مطالعات، فیبرین آلژینات از لحاظ پایداری و کشسانی (Elasticity) مناسب است و پیاسکلیدین، باعث افزایش بیان ژن‌های مخصوص غضروف می‌گردد. از این رو، در تحقیق حاضر، تأثیر پیاسکلیدین و Transforming growth factor beta1 (TGF-β1) بر القای کندروژنز سلول‌های بنیادی در داربست فیبرین آلژینات مورد مقایسه قرار گرفت.روش‌ها: Adipose derived stem cells (ADSCs) از بافت چربی سه بیمار استخراج و تکثیر داده شد. سپس به مدت 21 روز در داربست فیبرین آلژینات تحت تأثیر مدیوم کندروژنیک کشت داده شدند. میزان تکثیر و بقای سلول‌ها به روش MTT [3 (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide] و میزان بیان ژن‌های اگریکان، کلاژن II و X با استفاده از تکنیک Real-time polymerase chain reaction (Real-time PCR) مورد ارزیابی قرار گرفت.یافته‌ها: میزان تکثیر و بقا در داربست فیبرین آلژینات، در گروه حاوی پیاسکلیدین نسبت به سایر گروه‌ها، افزایش داشت؛ اما این افزایش به صورت معنی‌دار نبود (050/0 < P). همچنین، پیاسکلیدین باعث افزایش میزان بیان ژن کلاژن II (001/0 > P) و کاهش میزان بیان ژن کلاژن X در مقایسه با TGF-β1 گردید.نتیجه‌گیری: احتمال می‌رود پیاسکلیدین در روند القای کندروژنز ADSCs در داربست فیبرین آلژینات مؤثر بوده و بر افزایش بیان ژن‌های ویژه‌ی غضروف تأثیر داشته باشد

کلیدواژه‌ها


عنوان مقاله [English]

Comparing the Effects of Transforming Growth Factor Beta1 (TGF-ß1) and Piascledine on the Expression of Collagen II, X and Aggrecan Genes in Chondrogenesis of human Adipose-Derived Stem Cells in Fibrin Alginate Composite Scaffold

نویسندگان [English]

  • Hadi Didehvar 1
  • Farhad Golshan-Iranpoor 2
  • Ali Valiani 2
  • Batool Hashemibeni 3
  • Mojtaba Esmaeeli 1
1 MSc Student, Department of Anatomical Sciences, School of Medicine AND Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Cartilage injuries are the leading cause of disability in the elderly in developed countries. In addition, articular cartilage has a limited ability to repair. Current treatment methods for cartilage tissue injuries lead to fibrous tissue formation. Cell therapy is a treatment in which stem cells using tissue engineering can be differentiated into chondrocytes by using growth factors and scaffolds. Since growth factors such as transforming growth factor beta1 (TGF-β) leads to hypertrophy of cartilage chondrocytes tissue and many scaffolds are weak in terms of mechanics and stability, it is essential to achieve the appropriate scaffolds and inducing factors. Studies have shown that fibrin alginate scaffold is appropriate in terms of mechanical and stability and piascledine increases the cartilage-specific genes expression. Therefore, in this study the chondrogenic effect of TGF-β1 and piascledine on adipose derived stem cells in fibrin alginate scaffold was compared and evaluated.Methods: Fat samples were obtained from three persons. Adipose derived stem cells (ADSCs) was extracted from adipose tissue and proliferated. Then the cells were transferred to the fibrin alginate scaffold and the cells were cultured for 21 days under the influence of the induction medium. The rate of proliferation and survival of cells was evaluated by [3 (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide] MTT method and the rate of gene expression of Aggrecan and Collagen II and X was evaluated with Real-time polymerase chain reaction (Real-Time PCR) method.Findings: The results showed that proliferation rate and survival of cells in a fibrin alginate scaffold in the group containing Piascledine increased compared to the other groups, but this increase is not significant (P> 0.050). Also, Piascledine increased collagen II gene expression (P < 0.001) and reduced collagen X gene expression when compared to TGF-β1.Conclusion: Piascledine was found as a proper effective inducer in chondrogenic differentiation of human adipose derived stem cells cultured in fibrin alginate scaffold.

کلیدواژه‌ها [English]

  • Adipose derived stem cell
  • Piascledine
  • Chondrogenesis
  • Transforming growth factor beta1
  1. Hardingham T, Tew S, Murdoch A. Tissue engineering: Chondrocytes and cartilage. Arthritis Res 2002; 4(Suppl 3): S63-S68.
  2. Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am 1976; 58(2): 230-3.
  3. Mardani M, Hashemibeni B, Ansar MM, Zarkesh Esfahani SH, Kazemi M, Goharian V, et al. Comparison between chondrogenic markers of differentiated chondrocytes from adipose derived stem cells and articular chondrocytes in vitro. Iran J Basic Med Sci 2013; 16(6): 763-73.
  4. Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 2001; 98(14): 7841-5.
  5. Breen A, Dockery P, O'Brien T, Pandit A. Fibrin scaffold promotes adenoviral gene transfer and controlled vector delivery. J Biomed Mater Res A 2009; 89(4): 876-84.
  6. Chen G, Ushida T, Tateishi T. A biodegradable hybrid sponge nested with collagen microsponges. J Biomed Mater Res 2000; 51(2): 273-9.
  7. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000; 51(4): 586-95.
  8. Shikanov A, Xu M, Woodruff TK, Shea LD. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 2009; 30(29): 5476-85.
  9. Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 2011; 32(30): 7503-13.
  10. Morris VJ. Gelation of polysaccharides. In: Mitchell JR, Ledward DA, editors. Functional properties of food macromolecules. New York, NY: Elsevier; 1986. p. 121-8.
  11. Hashemibeni B, Razavi Sh, Esfandiary E, Karbasi S, Mardani M, Sadeghi F, et al. Effect of transforming growth factor- β3 and bone morphogenetic protein-6 growth factors on chondrogenic differentiation of adipose-derived stem cells in alginate scaffold. J Isfahan Med Sch 2010; 28(112): 607-20. [In Persian].
  12. Hashemibeni B, Razavi Sh, Esfandiary E, Karbasi S, Mardani M, Nasresfahani M. Induction of chondrogenic differentiation of human adipose-derived stem cells with TGF-β3 in pellet culture system. Iran J Basic Med Sci 2008; 11(1): 10-7.
  13. Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
  14. Henrotin YE, Labasse AH, Jaspar JM, de Groote DD, Zheng SX, Guillou GB, et al. Effects of three avocado/soybean unsaponifiable mixtures on metalloproteinases, cytokines and prostaglandin E2 production by human articular chondrocytes. Clin Rheumatol 1998; 17(1): 31-9.
  15. Mauviel A, Daireaux M, Hartmann DJ, Galera P, Loyau G, Pujol JP. Effects of unsaponifiable extracts of avocado/soy beans (PIAS) on the production of collagen by cultures of synoviocytes, articular chondrocytes and skin fibroblasts. Rev Rhum Mal Osteoartic 1989; 56(2): 207-11. [In French].
  16. Hunter DJ. Pharmacologic therapy for osteoarthritis--the era of disease modification. Nat Rev Rheumatol 2011; 7(1): 13-22.
  17. Sadeghian M, Hashemibeni B, Mardani M, Amirpoor N, Aliakbari M. Comparing the effect of platelet rich plasma (PRP) and fetal bovine serum (FBS) on proliferation and survival of adipose-derived stem cells in fibrin scaffolds. J Isfahan Med Sch 2015; 32(317): 2299-2311. [In Persian].
  18. Yang SH, Wu CC, Shih TT, Chen PQ, Lin FH. Three-dimensional culture of human nucleus pulposus cells in fibrin clot: Comparisons on cellular proliferation and matrix synthesis with cells in alginate. Artif Organs 2008; 32(1): 70-3.
  19. Valiani A, Hashemibeni B, Esfandiary E, Ansar MM, Kazemi M, Esmaeili N. Study of carbon nano-tubes effects on the chondrogenesis of human adipose derived stem cells in alginate scaffold. Int J Prev Med 2014; 5(7): 825-34.
  20. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1): 45-53.
  21. Wang ZY, Zhang QZ, Konno M, Saito S. Solgel transition of alginate solution by the addition of various divalent cations: 13C-nmr spectroscopic study. Biopolymers 1993; 33(4): 703-11.
  22. Esfandiary E, Valiani A, Hashemibeni B, Moradi I, Narimani M. The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro. Adv Biomed Res 2014; 3: 40.
  23. Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 2010; 29(4): 165-76.
  24. Creecy CM, O'Neill CF, Arulanandam BP, Sylvia VL, Navara CS, Bizios R. Mesenchymal stem cell osteodifferentiation in response to alternating electric current. Tissue Eng Part A 2013; 19(3-4): 467-74.
  25. Ruettger A, Neumann S, Wiederanders B, Huber R. Comparison of different methods for preparation and characterization of total RNA from cartilage samples to uncover osteoarthritis in vivo. BMC Res Notes 2010; 3: 7.
  26. Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 2006; 18(1): 64-73.
  27. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5(1): 17-26.
  28. Yang IH, Kim SH, Kim YH, Sun HJ, Kim SJ, Lee JW. Comparison of phenotypic characterization between "alginate bead" and "pellet" culture systems as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J 2004; 45(5): 891-900.
  29. Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 2010; 31(25): 6502-10.
  30. Buser Z, Liu J, Thorne KJ, Coughlin D, Lotz JC. Inflammatory response of intervertebral disc cells is reduced by fibrin sealant scaffold in vitro. J Tissue Eng Regen Med 2014; 8(1): 77-84.
  31. Chien CS, Ho HO, Liang YC, Ko PH, Sheu MT, Chen CH. Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage. J Biomed Mater Res B Appl Biomater 2012; 100(4): 948-55.
  32. Stevens MM, Qanadilo HF, Langer R, Prasad S, V. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 2004; 25(5): 887-94.
  33. Stevens MM, Marini RP, Martin I, Langer R, Prasad S, V. FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J Orthop Res 2004; 22(5): 1114-9.
  34. Ma HL, Hung SC, Lin SY, Chen YL, Lo WH. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 2003; 64(2): 273-81.
  35. Altinel L, Saritas ZK, Kose KC, Pamuk K, Aksoy Y, Serteser M. Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid. Tohoku J Exp Med 2007; 211(2): 181-6.