طبقه‌بندی امواج قلبی به ‌منظور تشخیص سکته‌ی قلبی مبتنی بر استخراج ویژگی‌های ریخت‌شناسی از الگوهای فضایی- زمانی امواج وکتور کاردیوگرام

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه بیوالکتریک، دانشکده‌ی فن‌آوریهای نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه بیوالکتریک، دانشکده‌ی فن‌آوریهای نوین علوم پزشکی و مرکز تحقیقات پردازش تصویر و سیگنال پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

4 استادیار، مرکز آموزشی- تحقیقاتی و درمانی قلب و عروق شهید رجایی، دانشگاه علوم پزشکی ایران، تهران، ایران

5 متخصص قلب و عروق، فلوشیپ اکوکاردیوگرافی، مرکز آموزشی تحقیقاتی و درمانی قلب و عروق شهید رجایی، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

مقدمه: یکی از شایع‌ترین بیماری‌های قلبی- عروقی (Cardiovascular diseases یا CVDs) در سراسر جهان سکته‌ی قلبی (Myocardial infarction یا MI) است. با پردازش و واکاوی امواج الکتروکاردیوگرام (Electrocardiography یا ECG) و وکتور کاردیوگرام (Vectorcardiography یا VCG)، می‌توان به تشخیص و توصیف بیماری‌های قلبی نظیر MI دست‌یافت. یکی از روش‌های نوین در تشخیص، استفاده از متغیرهای فضایی- زمانی امواج وکتور کاردیوگرام است. هدف از انجام این مطالعه، تفکیک صحیح امواج سالم از بیمار به‌ استفاده از طبقه‌بند شبکه‌ی عصبی مصنوعی و رسیدن به حساسیت و صحت قابل ‌قبول و همچنین، نشان دادن مزایای وکتور کاردیوگرافی و به‌ کارگیری آن به‌ عنوان روشی جهت پوشش معایب الکتروکاردیوگرافی بود.روش‌ها: در این تحقیق، علاوه بر به‌ کارگیری امواج الکتروکاردیوگرام در حوزه‌ی زمان، از الگوهای فضایی- زمانی امواج وکتور کاردیوگرام به‌ منظور شناسایی 80 بیمار مبتلا به MI و تمایز آن‌ها از 80 فرد سالم بهره بردیم.یافته‌ها: زمانی که ترکیب ویژگی‌های 12 لید ECG و 3 لید VCG به ورودی طبقه‌بند شبکه‌ی عصبی پیش‌خور (Feedforward neural network) اعمال شد، صحت 2/91 درصد، حساسیت 6/92 درصد و ویژگی 0/90 درصد حاصل شد که نتایج، مقادیر بالاتری را نسبت به زمانی که ویژگی‌ها به صورت جداگانه اعمال شوند، نشان می‌دهد.نتیجه‌گیری: مشاهدات بیانگر این است که روش‌های مبتنی بر ترکیب ECG و VCG، می‌توانند در تفکیک موارد MI از موارد سالم مؤثر باشند. امید است که این روش در ارزیابی بالینی و تشخیص نارسایی قلبی مفید واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

Classification of Cardiac Signals in Order to Diagnose Myocardial Infarction based on Extraction of Morphological Features from Spatio-Temporal Patterns of Vectorcardiogram Signals

نویسندگان [English]

  • Nastaran Jafari-Hafshejani 1
  • Alireza Mehri-Dehnavi 2
  • Reza Hajian 3
  • Shabnam Boudagh 4
  • Mohaddeseh Behjati 5
1 MSc Student, Department of Biomedical Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Biomedical Engineering, School of Advanced Medical Technology AND Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
4 Assistant Professor, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
5 Cardiologist, Echocardiography Fellowship, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
چکیده [English]

Background: One of the most common cardiovascular diseases (CVDs) in the world is myocardial infarction (MI). By analyzing electrocardiogram and vectorcardiography (VCG) signals, it is possible to identify and characterize heart diseases such as MI. One of the new methods of detection is the use of spatio-temporal parameters of VCG signals. This study aimed to correctly distinguish healthy signals from patients, achieve acceptable accuracy, and show the benefits of VCG and its application as a method to cover the shortcoming of electrocardiography.Methods: In this study, in addition to applying electrocardiogram signals in the time domain, spatio-temporal patterns of VCG signals were used to identify 80 patients with MI, and differentiate them from 80 healthy individuals.Findings: When combining the 12-lead electrocardiography (ECG) and the 3-lead VCG features applied to the Feedforward Neural Network classifier input, an accuracy of 91.2%, specificity of 92.6%, and specificity of 90% were obtained. The results were in higher values than when applied separately.Conclusion: The observations indicate that combined ECG and VCG methods can be effective in distinguishing MI cases from healthy cases. It is hoped that this method may be useful in the clinical evaluation and heart failure diagnosis.

کلیدواژه‌ها [English]

  • Myocardial Infarction
  • Electrocardiography
  • Vectorcardiography
  • Wavelet transform
  • Neural Network Models
  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 2019; 139(10): e56-e528.
  2. Zhang X, Cowan BR, Bluemke DA, Finn JP, Fonseca CG, Kadish AH, et al. Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS One 2014; 9(10): e110243.
  3. Chee J, Acharya R, Er K, Tan W, Chua CK. Visualization of cardiac health using vector cardiogram. IRBM 2008; 29(4): 245-54.
  4. Correa R, Arini PD, Correa LS, Valentinuzzi M, Laciar E. Identification of patients with myocardial infarction. vectorcardiographic and electrocardiographic analysis. Methods Inf Med 2016; 55(3): 242-9.
  5. Tripathy RK, Zamora-Mendez A, de la O Serna JA, Paternina MRA, Arrieta JG, Naik GR. Detection of life threatening ventricular arrhythmia using digital taylor fourier transform. Front Physiol 2018; 9: 722.
  6. Thomas M, Kr Das M, Ari S. Automatic ECG arrhythmia classification using dual tree complex wavelet based features. AEU-Int J Electron Commun 2015; 69(4): 715-21.
  7. Correa R, Arini PD, Correa LS, Valentinuzzi M, Laciar E. Novel technique for ST-T interval characterization in patients with acute myocardial ischemia. Comput Biol Med 2014; 50: 49-55.
  8. Remya RS, Indiradevi KP, Babu KKA. Classification of myocardial infarction using multi resolution wavelet analysis of ECG. Procedia Technology 2016; 24: 949-56.
  9. Diker A, Comert Z, Avci E, Velappan S. Intelligent system based on Genetic Algorithm and support vector machine for detection of myocardial infarction from ECG signals. Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU); 2018 May 2-5; Izmir, Turkey.
  10. Costa CM, Silva IS, de Sousa RD, Hortegal RA, Regis CDM. The association between reconstructed phase space and Artificial Neural Networks for vectorcardiographic recognition of myocardial infarction. J Electrocardiol 2018; 51(3): 443-9.
  11. Liu B, Liu J, Wang G, Huang K, Li F, Zheng Y, et al. A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Comput Biol Med 2015; 61: 178-84.
  12. Wang D, Si Y, Yang W, Zhang G, Li J. A novel electrocardiogram biometric identification method based on temporal-frequency autoencoding. Electronics 2019; 8(6): 667.
  13. Jeedella J, Ahamad HA, Al-Mualla M, Noras JM. Design and analysis of second order IIR notch filters with double frequency initialization. Proceedings of 2006 IEEE GCC Conference (GCC); 2006 Mar 20-22; Manama, Bahrain.
  14. Sundarasekar R, Thanjaivadivel M, Manogaran G, Kumar PM, Varatharajan R, Chilamkurti N, et al. Internet of things with maximal overlap discrete wavelet transform for remote health monitoring of abnormal ECG signals. J Med Syst 2018; 42(11): 228.
  15. Yang H, Bukkapatnam ST, Le T, Komanduri R. Identification of myocardial infarction (MI) using spatio-temporal heart dynamics. Med Eng Phys 2012; 34(4): 485-97.
  16. Kim TK. T test as a parametric statistic. Korean J Anesthesiol 2015; 68(6): 540-6.
  17. Moller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 1993; 6(4): 525-33.
  18. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 2017; 415-416: 190-8.