ارزیابی نقش تصویربرداری Diffusion tensor در درجه‌بندی تومورهای گلیال بر اساس آنیزوتروپی نسبی

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 کارشناس ارشد، گروه تکنولوژی رادیولوژی، دانشکده‌ی پیراپزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

2 استادیار، گروه تکنولوژی رادیولوژی، دانشکده‌ی پیراپزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

3 استاد، مرکز تحقیقات جراحی مغز و اعصاب عملکردی، بیمارستان شهدای تجریش، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

4 کارشناس ارشد، گروه تکنولوژی رادیولوژی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

چکیده

مقدمه: شایع‌ترین تومور مغزی، تومورهای گلیوما هستند. روش اصلی و استاندارد طلایی برای مشخص کردن درجه‌ی تومورهای گلیوما، نمونه‌برداری است که روشی تهاجمی محسوب می‌شود. ارزیابی صحیح درجه‌ی تومور برای تعیین بهترین و مناسب‌ترین روش درمان، بسیار حیاتی است. هدف از این مطالعه، ارزیابی نقش تصویربرداری Diffusion tensor (DTI یا Diffusion tensor imaging) به‌ عنوان یک روش غیر تهاجمی بر اساس آنیزوتروپی نسبی (Relative anisotropy یا RA) در درجه‌بندی تومورهای گلیوما است.روش‌ها: در این مطالعه، 20 بیمار مبتلا به تومور گلیوما با استفاده از مگنت 5/1 تسلا تحت تصویربرداری قرار گرفتند. دو Region of interest (ROI) یکی ماده‌ی سفید مجاور تومور و دیگری، الیاف عصبی مشابه با ROI اول در نیمکره‌ی مقابل تعریف شد.یافته‌ها: مقدار و نسبت آنیزوتروپی نسبی در تومورهای درجه‌ی پایین، بالاتر از تومورهای درجه‌ی بالا بود (008/0 = PRAt و 039/0 = PRAt/n).نتیجه‌گیری: بنا بر یافته‌های ما، از پارامتر آنیزوتروپی نسبی می‌توان در درجه‌بندی تومور کمک گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Role of Diffusion Tensor Imaging in Grading of Glial Tumors based on Relative Anisotropy

نویسندگان [English]

  • Fariba Davnian 1
  • Fariborz Faeghi 2
  • Sohrab Shahzadi 3
  • Zahra Shidfar 4
1 Department of Radiology, School of Paramedicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Assistant Professor, Department of Radiology, School of Paramedicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Professor, Research Center for Neurosurgery and Functional Nerves, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Department of Radiology, School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
چکیده [English]

Background: The most common primary tumors of the brain are gliomas. Despite improvements in treatment strategy, the prognosis for patients with high-grade gliomas has stayed poor, while it is relatively good for low-grade gliomas. The main and gold standard way for grading glial tumor is biopsy. Accurate assessment of tumor grade is vital for the determination of best treatment plan. The purpose of this study was to evaluate the role of diffusion tensor imaging (as a noninvasive method) using relative anisotropy (RA) in glial tumor grading.Methods: A total of 20 histologically confirmed gliomas patients were scanned using a 1.5-Tesla magnetic resonance scanner. We described two regions of interest (ROIs), white matter adjacent to the tumor and the homologous fiber tracts to first ROI in the contralateral hemisphere.Findings: The relative anisotropy values and ratio of the low-grade gliomas tended to be higher than those of the high-grade gliomas in the peritumoral fibers (P = 0.008, for RAt and P = 0.039 for RAt/n).Conclusion: Our findings prove that the relative anisotropy was different between low- and high-grade gliomas, which may be helpful in grading.

کلیدواژه‌ها [English]

  • Diffusion tensor imaging
  • Tumor grading
  • Glioma tumor
  • Relative anisotropy
  1. Brat DJ, van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 2004; 84(4): 397-405.
  2. Kayama T, Kumabe T, Tominaga T, Yoshimoto T. Prognostic value of complete response after the initial treatment for malignant astrocytoma. Neurol Res 1996; 18(4): 321-4.
  3. Lee HY, Na DG, Song IC, Lee DH, Seo HS, Kim JH, et al. Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. J Comput Assist Tomogr 2008; 32(2): 298-303.
  4. Johnson PC, Hunt SJ, Drayer BP. Human cerebral gliomas: correlation of postmortem MR imaging and neuropathologic findings. Radiology 1989; 170(1 Pt 1): 211-7.
  5. Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 1992; 34(6): 463-9.
  6. Beaulieu C. The basis of anisotropic water diffusion in the nervous system- a technical review. NMR Biomed 2002; 15(7-8): 435-55.
  7. Exarchos TP, Papadopoulos A, Fotiadis DI. Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications. Hershey, PA: Medical Information Science Reference; 2009.
  8. Papageorgiou TS, Chourmouzi D, Drevelengas A, Kouskouras K, Siountas A. Diffusion Tensor Imaging in brain tumors: A study on gliomas and metastases. Phys Med 2015; 31(7): 767-73.
  9. Smitha KA, Gupta AK, Jayasree RS. Total magnitude of diffusion tensor imaging as an effective tool for the differentiation of glioma. Eur J Radiol 2013; 82(5): 857-61.
  10. Stadlbauer A, Nimsky C, Buslei R, Salomonowitz E, Hammen T, Buchfelder M, et al. Diffusion tensor imaging and optimized fiber tracking in glioma patients: Histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 2007; 34(3): 949-56.
  11. Goebell E, Paustenbach S, Vaeterlein O, Ding XQ, Heese O, Fiehler J, et al. Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 2006; 239(1): 217-22.
  12. Seunarine KK, Alexander DC. Multiple fibers: Beyond the Diffusion tensor. In: Johansen-Berg H, Behrens TEJ, editors. Diffusion MRI. 2nd ed. San Diego, CA: Academic Press; 2014. p. 105-23.