شناسایی جهش IVSII-I ژن بتا گلوبین در ناقلین تالاسمی Minor با استفاده از روش High-Resolution Melting (HRM)

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 کارشناس ارشد، گروه ژنتیک، دانشکده‌ی علوم، دانشگاه شهرکرد، شهرکرد، ایران

2 استادیار، گروه ژنتیک، دانشکده‌ی علوم و پژوهشکده‌ی زیست فن‌آوری، دانشگاه شهرکرد، شهرکرد، ایران

3 دانشیار، گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 استادیار، مرکز تحقیقات فیزیولوژی کاربردی و مرکز تحقیقات رشد و نمو کودکان و پژوهشکده‌ی پیش‌گیری اولیه از بیماری‌های غیر واگیر و گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، ایران

چکیده

مقدمه: بتا تالاسمی یکی از رایج‌ترین اختلالات اتوزومی مغلوب در جمعیت جهانی است که به وسیله‌ی بیش از 200 جهش مختلف در زنجیره‌ی بتا گلوبین، ایجاد می‌شود. این بیماری، از نظر بالینی به سه حالت Minor، بینابینی و Major طبقه‌بندی می‌شود. بتا تالاسمی، رایج‌ترین بیماری تک ژنی در کشورهای مدیترانه، شرق میانه، شبه قاره‌ی هند، جنوب شرقی آسیا و یکی از اختلالات وراثتی گسترده در ایران است. از میان جهش‌های بتا تالاسمی مختلفی که در جمعیت ایران تشخیص داده شده است، (G/A) IVSII-1 شایع‌ترین جهش در بیشتر نواحی ایران است. هدف مطالعه‌ حاضر، تعیین میزان اختصاصیت و حساسیت روش HRM (High-resolution melting) در تشخیص افراد حامل جهش (G/A) IVSII-1 از افرادی بود که این جهش را نداشتند.روش‌ها: در این مطالعه، 30 نمونه‌ی خون افراد مبتلا به تالاسمی Minor مورد بررسی قرار گرفت. ژنوتیپ هر نمونه، از قبل با استفاده از روش‌های PCR-RFLP (Polymerase chain reaction-restriction fragment length polymorphism)، ARMS (Amplification-refractory mutation system) یا توالی‌یابی در آزمایشگاه ژنتیک بیمارستان الزهرای (س) اصفهان مشخص شده بود. استخراج DNA از خون محیطی انجام شد و نمونه‌ها با استفاده از روش HRM تعیین ژنوتیپ شدند. نتایج بر اساس نمودارهای طبیعی‌سازی و تمایز، تجزیه و تحلیل شدند.یافته‌ها: در این مطالعه، روش HRM توانست افراد حامل جهش IVSII-1 را با اختصایت و حساسیت 100 درصد شناسایی کند.نتیجه‌گیری: روش HRM اختصاصیت و حساسیت بالایی دارد. از این رو، روش مناسبی برای تشخیص جهش‌های شایع انواع بیماری‌های ژنتیکی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of IVSII-1 Mutation of Beta Globin Gene in Carriers of Thalassemia Minor Using High-Resolution Melting Analysis

نویسندگان [English]

  • Fatemeh Akhondi 1
  • Mojtaba Emadi-Baygi 2
  • Mansour Salehi 3
  • Parvaneh Nikpour 4
1 Department of Genetics, School of Basic Sciences, Shahrekord University, Shahrekord, Iran
2 Assistant Professor, Department of Genetics, School of Basic Sciences AND Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
3 Associate Professor, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Assistant Professor, Applied Physiology Research Center AND Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease AND Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Beta-thalassemia is one of the most common autosomal recessive disorders in the world population caused by more than 200 different mutations in the beta-globin chain. It is clinically classified as minor, intermediate and major. Beta-thalassemia is the most common monogenic disease in the Mediterranean countries, Middle East, Indian Subcontinent, and Southeast Asia and one of the widespread hereditary disorders in Iran. Among different

کلیدواژه‌ها [English]

  • Beta thalassemia minor
  • IVSII-1(G/A)
  • High-resolution melting (HRM)
  • Normalized plot
  • Difference plot
  1. Vichinsky EP, MacKlin EA, Waye JS, Lorey F, Olivieri NF. Changes in the epidemiology of thalassemia in North America: a new minority disease. Pediatrics 2005; 116(6): e818-e825.
  2. Lahiry P, Al-Attar SA, Hegele RA. Understanding beta-thalassemia with focus on the Indian subcontinent and the Middle East. Open Hematol J 2008; 2(1): 5-13.
  3. Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med 2005; 353(11): 1135-46.
  4. Birgens H, Ljung R. The thalassaemia syndromes. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 67(1): 11-26.
  5. Urbinati F, Madigan C, Malik P. Pathophysiology and therapy for haemoglobinopathies. Part II: thalassaemias. Expert Rev Mol Med 2006; 8(10): 1-26.
  6. Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol 1998; 11(1): 1-51.
  7. Karimi M, Jamalian N, Yarmohammadi H, Askarnejad A, Afrasiabi A, Hashemi A. Premarital screening for beta-thalassaemia in Southern Iran: options for improving the programme. J Med Screen 2007; 14(2): 62-6.
  8. Salehi R, Fisher CA, Bignell PA, Eslami G, Old JM. Identification of three novel mutations [-41 (A>C), codon 24 (-G), and IVS-I-109 (-T)], in a study of beta-thalassemia alleles in the Isfahan region of Iran. Hemoglobin 2010; 34(1): 115-20.
  9. Derakhshandeh-Peykar P, Akhavan-Niaki H, Tamaddoni A, Ghawidel-Parsa S, Naieni KH, Rahmani M, et al. Distribution of beta-thalassemia mutations in the northern provinces of Iran. Hemoglobin 2007; 31(3): 351-6.
  10. Hosseinpour Feizi MA, Hosseinpour Feizi AA, Pouladi N, Haghi M, Azarfam P. Molecular spectrum of beta-thalassemia mutations in Northwestern Iran. Hemoglobin 2008; 32(3): 255-61.
  11. Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A 1989; 86(16): 6230-4.
  12. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 1989; 17(7): 2503-16.
  13. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230(4732): 1350-4.
  14. Phylipsen M, Amato A, Cappabianca MP, Traeger-Synodinos J, Kanavakis E, Basak N, et al. Two new beta-thalassemia deletions compromising prenatal diagnosis in an Italian and a Turkish couple seeking prevention. Haematologica 2009; 94(9): 1289-92.
  15. Chern SR, Chen CP. Molecular prenatal diagnosis of thalassemia in Taiwan. Int J Gynaecol Obstet 2000; 69(2): 103-6.
  16. Vrettou C, Palmer G, Kanavakis E, Tzetis M, Antoniadi T, Mastrominas M, et al. A widely applicable strategy for single cell genotyping of beta-thalassaemia mutations using DGGE analysis: application to preimplantation genetic diagnosis. Prenat Diagn 1999; 19(13): 1209-16.
  17. Takahashi-Fujii A, Ishino Y, Kato I, Fukumaki Y. Rapid and practical detection of beta-globin mutations causing beta-thalassemia by fluorescence-based PCR-single-stranded conformation polymorphism analysis. Mol Cell Probes 1994; 8(5): 385-93.
  18. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 2004; 50(7): 1156-64.
  19. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003; 49(6 Pt 1): 853-60.
  20. Rahimi Z. Genetic epidemiology, hematological and clinical features of hemoglobinopathies in Iran. Biomed Res Int 2013; 2013: 803487.
  21. Patrinos GP, Giardine B, Riemer C, Miller W, Chui DH, Anagnou NP, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res 2004; 32(Database issue): D537-D541.
  22. Najmabadi H, Karimi-Nejad R, Sahebjam S, Pourfarzad F, Teimourian S, Sahebjam F, et al. The beta-thalassemia mutation spectrum in the Iranian population. Hemoglobin 2001; 25(3): 285-96.
  23. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 1989; 86(8): 2766-70.
  24. Xiao W, Oefner PJ. Denaturing high-performance liquid chromatography: A review. Hum Mutat 2001; 17(6): 439-74.
  25. Li Q, Liu Z, Monroe H, Culiat CT. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 2002; 23(10): 1499-511.
  26. Sanguansermsri P, Shimbhu D, Wongvilairat R,Sanguansermsri T. Associations of common beta-thalassemia mutations with beta-globin gene frameworks in Northern Thailand. ASEAN Journal on Science and Technology for Development, 2004; 21(1): 53-6.
  27. Tan JA, Tay JS, Lin LI, Kham SK, Chia JN, Chin TM, et al. The amplification refractory mutation system (ARMS): a rapid and direct prenatal diagnostic technique for beta-thalassaemia in Singapore. Prenat Diagn 1994; 14(11): 1077-82.
  28. Shaji RV, Edison ES, Poonkuzhali B, Srivastava A, Chandy M. Rapid detection of beta-globin gene mutations and polymorphisms by temporal temperature gradient gel electrophoresis. Clin Chem 2003; 49(5): 777-81.
  29. Cai SP, Wall J, Kan YW, Chehab FF. Reverse dot blot probes for the screening of beta-thalassemia mutations in Asians and American blacks. Hum Mutat 1994; 3(1): 59-63.
  30. Vrettou C, Traeger-Synodinos J, Tzetis M, Malamis G, Kanavakis E. Rapid screening of multiple beta-globin gene mutations by real-time PCR on the LightCycler: application to carrier screening and prenatal diagnosis of thalassemia syndromes. Clin Chem 2003; 49(5): 769-76.
  31. Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2007; 8(6): 597-608.
  32. Montgomery J, Wittwer CT, Palais R, Zhou L. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2007; 2(1): 59-66.
  33. Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 2004; 50(10): 1748-54.
  34. Prathomtanapong P, Pornprasert S, Phusua A, Suanta S, Saetung R, Sanguansermsri T. Detection and identification of beta-thalassemia 3.5 kb deletion by SYBR Green1 and high resolution melting analysis. Eur J Haematol 2009; 82(2): 159-60.
  35. McKinney JT, Longo N, Hahn SH, Matern D, Rinaldo P, Strauss AW, et al. Rapid, comprehensive screening of the human medium chain acyl-CoA dehydrogenase gene. Mol Genet Metab 2004; 82(2): 112-20.
  36. Willmore C, Holden JA, Zhou L, Tripp S, Wittwer CT, Layfield LJ. Detection of c-kit-activating mutations in gastrointestinal stromal tumors by high-resolution amplicon melting analysis. Am J Clin Pathol 2004; 122(2): 206-16.
  37. Norambuena PA, Copeland JA, Krenkova P, Stambergova A, Macek M, Jr. Diagnostic method validation: High resolution melting (HRM) of small amplicons genotyping for the most common variants in the MTHFR gene. Clin Biochem 2009; 42(12): 1308-16.
  38. Marashi SJ, Eshkoor SA, Mirinargesi MS, Reza M. Detection of eight common β-globin gene mutation in thalassemia major patients using real time polymerase chain reaction (PCR)-high resolution melting and EvaGreen™ dye. Afr J Biotechnol 2012; 11(2): 1486-96.
  39. Shih HC, Er TK, Chang TJ, Chang YS, Liu TC, Chang JG. Rapid identification of HBB gene mutations by high-resolution melting analysis. Clin Biochem 2009; 42(16-17): 1667-76.