بهبود اثرات آنتی‌بیوتیک‌ها از طریق ریزپوشانی آن‌ها با نانوذرات

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکترا، گروه میکروبیولوژی، واحد فلاورجان، دانشگاه آزاد اسلامی، اصفهان، ایران

2 استادیار، گروه میکروبیولوژی، واحد فلاورجان، دانشگاه آزاد اسلامی، اصفهان، ایران

چکیده

مقاله مروری




مقدمه: مقاومت باکتری‌های بیماری‌زا به عوامل ضد میکروبی به‌عنوان یک همه‌گیری خاموش محسوب می‌شود که اثربخشی آنتی‌بیوتیک‌ها و سایر داروهای ضد میکروبی را تهدید می‌کند.
روش‌ها: این مقاله از نوع مروری است و برای تهیه‌ی آن، مقالات اصیل از سال 2011 تا 2024 به‌صورت سیستماتیک با استفاده از پایگاه‌های Scopus، PubMed، Web of Science، BIO ONE و Google Scholar جستجو شدند. برای این منظور از کلمات کلیدی مرتبط شامل"Resistance to Antibiotics" ، "Encapsulation of Antibiotics in Nanoparticles"  و "Nanoparticles Safety" استفاده شد.
یافته‌ها: اندازه‌گیری تأثیر اجتماعی، اقتصادی و اثرهای زیست‌محیطی میکروارگانیسم‌های مقاوم به دارو دشوار است، اما قطعاً قابل توجه است. نانوداروهای مختلفی مبتنی بر نانوسیستم‌های آلی (مانند لیپوزوم‌ها، میسل‌های پلیمری و نانوذرات پلیمری) و نانوسیستم‌های معدنی برای مبارزه با پاتوژن‌های مقاوم به دارو مطرح شده‌اند. نانوذرات می‌توانند با تشکیل رادیکال‌های هیدروکسیل فعال، تغییرات در عملکردهای دفاعی سلولی و اثر ضدبیوفیلم، تأثیر هم‌افزایی بر آنتی‌بیوتیک‌ها داشته باشند. همچنین، نانوذراتی با سمیت کم، کارآیی بالا، توانایی نفوذ به داخل سلول‌های میزبان و قابلیت رهایش دارو در محل خاص، می‌توانند حامل‌های بسیار مؤثری برای آنتی‌بیوتیک‌ها باشند. از جمله این حامل‌ها، لیپوزوم‌ها با ویژگی‌های آب‌دوست و آب‌گریز، میسل‌های حامل داروهای محلول در آب و نانوذرات پلیمری هستند که مقاومت سویه‌های مقاوم به چند دارو و مقاومت بیوفیلم‌ها را می‌شکنند. در این میان، پلیمرهای زیست‌تخریب‌پذیر به‌دلیل ایمنی بالاتر، گزینه‌های مطلوب‌تری به شمار می‌آیند.
نتیجه‌گیری: سیستم‌های تحویل آنتی‌بیوتیک مختلفی با استفاده از نانوذرات ساخته شده‌اند، اما هنوز تحقیقات بیشتری برای طراحی سیستم‌های مؤثرتر با سطح ایمنی بالا لازم است.

تازه های تحقیق

Samereh Nouri: PubMed

Maryam Mohammadi Sichani: Google Scholar, PubMed

Nafiseh Sadat Naghavi: Google Scholar, PubMed

Gholam Reza Amiri: Google Scholar, PubMed

Laleh Hoveida: Google Scholar, PubMed

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving the Effects of Antibiotics Through Their Micro-Encapsulation with Nanoparticles

نویسندگان [English]

  • Samereh Nouri 1
  • Maryam Mohammadi Sichani 2
  • Nafiseh Sadat Naghavi 2
  • Gholam Reza Amiri 2
  • Laleh Hoveida 2
1 PhD Student, Department of Microbiology, Fal. C.,, Islamic Azad University, Isfahan, Iran
2 Assistant Professor, Department of Microbiology, Fal. C.,, Islamic Azad University, Isfahan, Iran
چکیده [English]

Background: Resistance of pathogenic bacteria to antimicrobial agents is a silent epidemic threatening the effectiveness of antibiotics and other antimicrobial drugs.
Methods: This article is a review and was prepared by systematically searching original articles from 2011 to 2024 using Scopus, PubMed, Web of Science, BIO ONE, and Google Scholar databases. For this purpose, related keywords, including "Resistance to antibiotics," "Encapsulation of antibiotics in nanoparticles," and "Nanoparticles safety" were used. After removing duplicate and unrelated studies, 59 studies were included.
Findings: Measuring the social, economic, and environmental impacts of drug-resistant microorganisms is challenging, but their significance is undeniable. Various nanomedicines based on organic nano-systems (liposomes, polymer micelles, and polymer nanoparticles) and inorganic nano-systems have been proposed to combat drug-resistant pathogens. Nanoparticles can have a synergistic effect on antibiotics by forming active hydroxyl radicals, changes in cellular defense activities, and anti-biofilm effects. Also, nanoparticles with low toxicity, high efficiency, the ability to penetrate the host cells, and the ability to release the drug at a specific location can be highly effective carriers for antibiotics. Among these carriers are liposomes with hydrophilic and hydrophobic properties, micelles carrying water-soluble drugs, and polymer nanoparticles that break the resistance of multidrug-resistant strains and biofilms. Meanwhile, biodegradable polymers have higher safety.
Conclusion: Various antibiotic delivery systems have been developed using nanoparticles, but further research is still needed to design more effective systems with a high level of safety.

کلیدواژه‌ها [English]

  • Antibacterial drug resistance
  • Nanoparticles
  • Antibiotic
  • Encapsulation

سامره نوری: PubMed

مریم محمدی سیچانی: Google Scholar, PubMed

نفیسه سادات نقوی: Google Scholar, PubMed

غلامرضا امیری: Google Scholar, PubMed

لاله هویدا: Google Scholar, PubMed

  1. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 2013; 4: 47.
  2. Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2014; 2: 145.
  3. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 2014; 5(6): 229-41.
  4. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 2015; 6: 22-9.
  5. Pokharel S, Shrestha P, Adhikari B. Antimicrobial use in food animals and human health: time to implement ‘One Health’approach. Antimicrob Resist Infect Control 2020; 9(1): 181.
  6. Munkholm L, Rubin O. The global governance of antimicrobial resistance: a cross-country study of alignment between the global action plan and national action plans. Global Health 2020; 16(1): 109.
  7. Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg 2016; 110(7): 377-80.
  8. Paul S, Mukherjee S, Banerjee P. Recent advancement in nanomaterial-encapsulated drug delivery vehicles for combating cancer, COVID-19, and HIV-like chronic diseases. Mater Adv 2023; 4(9): 2042-61.
  9. van de Sande-Bruinsma N, Grundmann H, Verloo D, Tiemersma E, Monen J, Goossens H, et al. Antimicrobial drug use and resistance in Europe. Emerg Infect Dis 2008; 14(11): 1722-30.
  10. Sood U, Singh DN, Hira P, Lee JK, Kalia VC, Lal R, Shakarad M. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 2020; 307: 98-106.
  11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3): 268-81.
  12. Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: one health approach. Vet World 2022; 15(3): 743-9.
  13. Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, Knight GM, Robotham JV. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control 2018; 7: 58.
  14. Interagency Coordination Group. No Time to Wait: infections from drug-resistant securing the future from drug-resistant infections. New York, NY, USA: Artforum International Magazine. 2019.
  15. Mondal SK, Chakraborty S, Manna S, Mandal SM. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharm 2024; 3: 388-402.
  16. Cividino S, Halbac-Cotoara-Zamfir R, Salvati L. Revisiting the “city life cycle”: global urbanization and implications for regional development. Sustain 2020; 12(3): 1151.
  17. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, Ramachandran S. Global rise in human infectious disease outbreaks. J R Soc Interface 2014; 11(101): 20140950.
  18. Peters A, Vetter P, Guitart C, Lotfinejad N, Pittet D. Understanding the emerging coronavirus: what it means for health security and infection prevention. J Hosp Infect 2020; 104(4): 440-8.
  19. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 2015; 40(4): 277-83.
  20. Adebisi YA. Balancing the risks and benefits of antibiotic use in a globalized world: the ethics of antimicrobial resistance. Glob Health 2023; 19(1): 27.
  21. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals (Basel) 2023; 16(11): 1615.
  22. Nappier SP, Liguori K, Ichida AM, Stewart JR, Jones KR. Antibiotic resistance in recreational waters: state of the science. Int J Environ Res Public Health 2020; 17(21): 8034.
  23. Mortimer M, Wang Y, Holden PA. Molecular mechanisms of nanomaterial-bacterial interactions revealed by omics—the role of nanomaterial effect level. Front Bioeng Biotechnol 2021; 9: 683520.
  24. Slavin YN, Asnis J, Hńfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotech 2017; 15(1): 65.
  25. Heydari N, Amiri G, Karbasizade V. Synthesis and assessment of antibacterial effects of CdSe: Ag nanopar-ticles produced by chemical precipitation method. Int J Bio-Inorg Hybr Nanomater 2016; 5(2): 147-52.
  26. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2: 1-0.
  27. Naghsh N, Rezaeizadeh G, Khayam-Nekooii MS, Pourmohammad Hosseini G. Silver nanoparticles: synthesis, bio-applications, and their effects on human health. IJMCM 2022; 12(1): 1664-83.
  28. Najafabadi SS, Doudi M, Tahmourespour A, Amiri G, Rezayatmand Z. Assessment of Antimicrobial activity of chitosan, ZnO, and Urtica dioica–ZnO NPs against Staphylococcus aureus isolated from diabetic ulcers. Curr Microbiol 2024; 81(9): 295.
  29. Bagheri Mohammad Gholipour M, Doudi M, Ahadi AM, Amiri GR. Investigating the antibacterial effect of zinc oxide/banana peel bionanoparticles on multidrug-resistant uropathogenic bacteria isolated from children under two years of age [in Persian]. New Cell Mol Biotechnol J 2023; 14(53): 99-114.
  30. Rajendran S, Inwati GK, Yadav VK, Choudhary N, Solanki MB, Abdellattif MH, et al. Enriched catalytic activity of TiO2 nanoparticles supported by activated carbon for noxious pollutant elimination. Nanomat 2021; 11(11): 2808.
  31. Kumar P, Inwati GK, Mathpal MC, Ghosh S, Roos WD, Swart HC. Defects induced enhancement of antifungal activities of Zn doped CuO nanostructures. Appl Surf Sci 2021; 560: 150026.
  32. Varier KM, Gudeppu M, Chinnasamy A, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: antimicrobial applications and its prospects. Advanced Nanostructured Materials for Environmental Remediation 2019: 321-55.
  33. Hari N, Thomas TK, Nair AJ. Comparative study on the synergistic action of differentially synthesized silver nanoparticles with β‐cephem antibiotics and chloramphenicol. J Nanosci 2014; 2014(1): 201482.
  34. Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceut 2020; 12(2): 142.
  35. Yang J, Zhao Y, Cao J, Gong C, Zuo J, Zhang N, Zhao Y. Hyaluronic acid and antimicrobial peptide-modified gold/silver hybrid nanocages to combat bacterial multidrug resistance. Int J Pharm 2020; 586: 119505.
  36. Lam SJ, O'Brien-Simpson NM, Pantarat N, Sulistio A, Wong EH, Chen YY, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol 2016; 1(11): 16162.
  37. Pandey RP, Mukherjee R, Priyadarshini A, Gupta A, Vibhuti A, Leal E, et al. Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed Pharmacother 2021; 141: 111943.
  38. Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, Hu P, Hu H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release 2019; 300: 52-63.
  39. Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res 2020; 24: 12.
  40. Mohan S, Oluwafemi OS, Kalarikkal N, Thomas S, Songca SP. Biopolymers–application in nanoscience and nanotechnology. Recent Advances in Biopolymers. 2016; 1(1): 47-66.
  41. Karaman DS, Manner S, Fallarero A, Roseholm JM. Current approaches for exploration of nanoparticles as anti-bacterial agents. Anti-bacterial Agents 2017; 61: 1-9.
  42. Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, et al. A review and revisit of nanoparticles for antimicrobial drug delivery. J Med Life 2022; 15(3): 328-35.
  43. Kumar H, Bhardwaj K, Nepovimova E, Kuča K, Singh Dhanjal D, Bhardwaj S, et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel) 2020; 10(7): 1334.
  44. Abdel-Aziz MM, Yosri M, Amin BH. Control of imipenem resistant-Klebsiella pneumoniae pulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. J Radiation Res Appl Sci 2017; 10(4): 353–60.
  45. Rishi P, Bhogal A, Arora S, Pandey SK, Verma I, Kaur IP. Improved oral therapeutic potential of nanoencapsulated cryptdin formulation against Salmonella infection. Eur J Pharm Sci 2015; 72(2): 27–33.
  46. Qing G, Zhao X, Gong N, Chen J, Li X, Gan Y, et al. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat Commun 2019; 10(1): 4336.
  47. Liu S, Fukushima K, Venkataraman S, Hedrick JL, Yang YY. Supramolecular nanofibers self-assembled from cationic small molecules derived from repurposed poly (ethylene teraphthalate) for antibiotic delivery. Nanomedicine: Nanatechnol Biology Med 2018; 14(1): 165-72.
  48. Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, et al. Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii. ACS Appl Mater Interfaces 2021; 13(26): 30434-57.
  49. El-Telbany M, Mohamed AA, Yahya G, Abdelghafar A, Abdel-Halim MS, Saber S, et al. Combination of meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics (Basel) 2022; 11(10): 1374.
  50. Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int J Nanomed 2016; 11: 3789-800.
  51. Gomaa NH, El-Aziz NK, El-Naenaeey ES, Abdelaziz WS, Sewid AH. Antimicrobial potential of myricetin-coated zinc oxide nanocomposite against drug-resistant Clostridium perfringens. BMC Microbiol 2023; 23(1): 79.
  52. Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res 2019; 2019: 1356540.
  53. Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomed 2011; 9: 3281-93.
  54. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 2018; 16: 1-33.
  55. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017; 46(14): 4218-44.
  56. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
  57. Wen ZS, Xu YL, Zou XT, Xu ZR. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 2011; 9(6): 1038-55.
  58. Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Curr Pathobiol Rep 2021; 9(4): 133-44.
  59. Hamdi E, Hidouri S. Biological uses of nanomaterials within the safe handling and toxic effects:(Brain as a model). Advances in Redox Research 2024; 28: 100105.
  60. Fatahian S, Shahbazi-Gahrouei D, Pouladian M, Yousefi M, Amiri G, Noori A. Biodistribution and toxicity assessment of radiolabeled and DMSA coated ferrite nanoparticles in mice. J Radioanal Nucl Chem 2012; 293(3): 915-21.
  61. Mansouri F, Amiri G, Fatemi M. Synthesis and tissue distribution of CoFe2O4 nanoparticles coated with DMSA in rats’ liver. Nnomed J 2016; 3(3): 196-201.
  62. Nasr Esfahani M, Amiri G, Naghsh N. The effect of MgO@ FO nanoparticles on liver enzymes in male mice injected with Thioacetamide. Int J Bio-Inorg Hybr Nanomater 2021; 10(3): 135-41.
  63. Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224: 86-102.
  64. Singh P, Garg A, Pandit S, Mokkapati VR, Mijakovic I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials (Basel)2018; 8(12): 1009.
  65. Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol 2019; 10: 1153.