بررسی فراوانی اینتگرون 1، 2 و تشکیل بیوفیلم در جدایه‌های بالینی سودوموناس آئروژینوزا شهر تهران

نوع مقاله : Original Article(s)

نویسندگان

1 دانشجوی دکتری گروه میکروبیولوژی، دانشکده‌ی علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران

2 استاد، گروه میکروبیولوژی، مرکز تحقیقات آزمایشگاهی مرجع سلامت ایران، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران

3 دانشیار، گروه میکروبیولوژی، دانشکده‌ی علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مقدمه: سودوموناس آئروژینوزا، یکی از باکتری‌های مهم در ایجاد طیف گسترده‌ای از عفونت‌ها می‌باشد.گسترش شیوع مقاومت آنتی‌بیوتیک در میان آنها نگران‌کننده بوده و اینتگرون‌ها در کنار تشکیل بیوفیلم از عوامل مهم افزایش بروز مقاومت آنتی‌بیوتیک در آنها هستند. در مطالعه‌ی حاضر، فراوانی اینتگرون‌های کلاس 1، 2 و تشکیل بیوفیلم در بین جدایه‌های بالینی سودوموناس آئروژینوزا در شهر تهران بررسی گردید.
روش‌ها: در این مطالعه، 100 ایزوله بالینی سودوموناس آئروژینوزا جداسازی شد. نمونه‌ها از نظر کشت میکروبی و بیوشیمیایی بررسی و تأیید مولکولی با PCR برای ژن‌های OprL انجام و حضور اینتگرون‌های کلاس 1 و 2 بررسی شد.
یافته‌ها: شیوع اینتگرون کلاس 1 و 2 به ترتیب 47 و 8 درصد بود. اینتگرون 1 و 2 بطور معنی‌داری در بیوفیلم شدید و متوسط بیشتر از موارد ضعیف بودند (05/0 > P). از 33 نمونه با بیوفیلم قوی 9/90 درصد نمونه‌ها دارای ژن اینتگرون 1 بودند. نتایج نشان داد که ژن اینتگرون 1 بطور معنی‌داری در نمونه‌های با مقاومت دارویی چندگانه (Multiple drug resistance) MDR بیشتر از نمونه‌های فاقد MDR بود (05/0 > P).
نتیجه‌گیری: ارتباط بین تشکیل بیوفیلم و حضور اینتگرون‌ها نشان‌دهندهی‌ نقش این عوامل در ایجاد مقاومت آنتی‌بیوتیکی بوده و حضور اینتگرون‌های 1 و 2 در سویه‌های بالینی می‌تواند ریسک انتقال ژن‌های مقاومت دارویی را افزایش دهد.

تازه های تحقیق

سعید بشارتی:  Google Scholar, PubMed

محمد رهبر: Google Scholar

ندا سلیمانی: Google Scholar, PubMed

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Prevalence of Integron 1, 2 and Biofilm Formation in Clinical Isolates of Pseudomonas Aeruginosa in Tehran

نویسندگان [English]

  • Saeid Besharati 1
  • Mohammad Rahbar 2
  • Neda Soleimani 3
1 PhD Student, Department of Microbiology and Microbial Biotechnology, School of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
2 Professor, Departments of Microbiology, Iranian Reference Health Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
3 Assistant Professor of Medical Bacteriology, Department of Microbiology and Microbial Biotechnology, School of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Background: Pseudomonas aeruginosa is a significant bacterium responsible for various infections. The increasing spread of antibiotic resistance in these bacteria is concerning. Key factors contributing to the rise in antibiotic resistance include the presence of integrons and the ability to form biofilms. The current study investigated the abundance of class 1 and 2 integrons and biofilm formation among clinical isolates of Pseudomonas aeruginosa in Tehran, Iran.
Methods: In this study, 100 clinical isolates of Pseudomonas aeruginosa were isolated. The samples were examined in terms of microbial and biochemical culture, molecular confirmation was done by PCR for OprL genes and the presence of class 1 and 2 integrons was checked. The significance of variables was checked with the p-value.
Findings: The prevalence of integron class 1 and 2 was 47% and 8%, respectively. Integron 1 and 2 were significantly higher in severe and moderate biofilm than in weak cases (P < 0.05). Out of 33 samples with strong biofilm, 90.9% of samples had the integron one gene. The results showed that the integron one gene was significantly higher in Multiple drug resistance (MDR) samples than in non-MDR samples (P < 0.05).
Conclusion: The relationship between biofilm formation and the presence of integrons shows the role of these factors in creating antibiotic resistance, and the presence of integrons 1 and 2 in clinical strains can increase the risk of drug resistance gene transmission.

کلیدواژه‌ها [English]

  • Pseudomonas aeruginosa
  • Drug resistance
  • Biofilms
  • Integrons
  1. Leisner JJ. The diverse search for synthetic, semisynthetic and natural product antibiotics from the 1940s and up to 1960 exemplified by a small pharmaceutical player. Frontiers in microbiology 2020; 11: 976
  2. Varahram M, Besharati S, Farnia P, Ghanavi J, Saif S, Nia JH, et al. Correlation of single-nucleotide polymorphism at interferon-gamma R1 (at Position - 56) in positive purified protein derivative health workers with COVID-19 infection. Int J Mycobacteriol 2022;11(3): 318-22.
  3. Moradi M, Besharati S, Moghaddam MM, Fasihi-Ramandi M, Azad ZM, Mirnejad R. A concise review on the antimicrobial peptides and their critical activity against intracellular targets of bacteria. J Microbiol Biotechnol Food Sci 2023; 12(4): e6006-e.
  4. Alara JA, Alara OR. An overview of the global alarming increase of multiple drug resistant: a major challenge in clinical diagnosis. Infect Disord Drug Targets 2024; 24(3): e250723219043.
  5. Besharati S, Farnia P, Farnia P, Ghanavi J, Velayati AA. Investigation of the hypothesis of biofilm formation in coronavirus (COVID-19). Biomed Biotechnol Res J 2020; 4(Suppl 1): S99-S100.
  6. Besharati S. The expanding antibiotic resistance: the requirement of new therapeutic strategy for the development of new anti-infective. [27 November 2024]. Available from: https://www.intechopen.com/chapters/1201282
  7. Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis 2020; 20(1): 92.
  8. Davarzani F, Saidi N, Besharati S, Saderi H, Rasooli I, Owlia P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iran J Public Health 2021; 50(2): 341-9.
  9. Hafiz TA, Bin Essa EA, Alharbi SR, Alyami AS, Alkudmani ZS, Mubaraki MA, et al. Epidemiological, microbiological, and clinical characteristics of multi-resistant Pseudomonas aeruginosa isolates in King Fahad Medical City, Riyadh, Saudi Arabia. Trop Med Infect Dis 2023; 8(4): 205.
  10. Litwin A, Rojek S, Gozdzik W, Duszynska W. Pseudomonas aeruginosa device associated–healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: polish, 8.5-year, prospective, single-centre study. BMC Infect Dis 2021; 21(1): 180.
  11. Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, et al. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: an overview. Antibiotics (Basel) 2022; 11(4): 520.
  12. Sabbagh P, Rajabnia M, Maali A, Ferdosi-Shahandashti E. Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iran J Basic Med Sci 2021; 24(2): 136-42.
  13. Davoodi NR, Soleimani N, Hosseini SM, Rahnamaye-Farzami M. Molecular characterization and epidemiological investigation of colistin resistance in carbapenem-resistant Klebsiella pneumoniae in a tertiary care hospital in Tehran, Iran. BMC Microbiol 2024; 24(1): 230.
  14. Besharati S, Owlia P, Sadeghi A, Ahmadi F, Alebouyeh M. Frequency of integrons 1 and 2 and their relationship with drug resistance patterns of Salmonella isolates in patients with gastroenteritis in Tehran, Iran [in Persian]. Daneshvar Medicine 2020; 28(5): 1-10.
  15. El-Baz AM, Yahya G, Mansour B, El-Sokkary MM, Alshaman R, Alattar A, et al. The Link between occurrence of class I integron and acquired aminoglycoside resistance in clinical MRSA Antibiotics (Basel) 2021; 10(5): 488.
  16. Lewis I, James S. Performance standards for antimicrobial susceptibility testing. [January 27, 2025]. Available from: https://clsi.org/shop/standards/m100/
  17. Müsken M, Di Fiore S, Römling U, Häussler S. A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 2010; 5(8): 1460-9.
  18. Sultan AM, Mahmoud NM. Detection of resistance integrons among biofilm and non-biofilm producing clinical isolates of Pseudomonas aeruginosa. Germs 2024; 14(1): 11-9.
  19. Alfarras AF, Al-Daraghi WA. Characterization of Integron Genes of Clinical Isolates of Pseudomonas aeruginosa which Perform Resistance to Antibiotics and Biofilm Formation by these Strains. Mikrobiolohichnyi Zhurnal 2024; 86(1): 3-13.
  20. Karami P, Khaledi A, Mashoof RY, Yaghoobi MH, Karami M, Dastan D, et al. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports. 2020; 18: 100561.
  21. Khademi F, Ashrafi SS, Neyestani Z, Vaez H, Sahebkar A. Prevalence of class I, II and III integrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Reports 2021; 25: 101407.
  22. Lima JLdC, Alves LR, Jacomé PRLdA, Bezerra JP, Maciel MAV, Morais MMCd. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis 2018; 22(2): 129-36.
  23. Zahedani SS, Tahmasebi H, Jahantigh M. Coexistence of virulence factors and efflux pump genes in clinical isolates of pseudomonas aeruginosa: analysis of biofilm‐forming strains from Iran. International Journal of Microbiology 2021; 2021(1): 5557361.
  24. Ahmadian L, Haghshenas MR, Mirzaei B, Norouzi Bazgir Z, Goli HR. Distribution and molecular characterization of resistance gene cassettes containing class 1 integrons in multi-drug resistant (MDR) clinical isolates of Pseudomonas aeruginosa. Infect Drug Resist 2020; 13: 2773-81.
  25. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Prevalence and molecular characterization of Class 1 integrons among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Mol Genet Microbiol Virol 2017; 32: 109-15.
  26. Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes 2020; 13(1): 380.
  27. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iranian J Microbiol 2013; 5(1): 36-41.
  28. Aryanezhad M, Shakibaie MR, Karmostaji A, Shakibaie S. Prevalence of Class 1, 2, and 3 Integrons and Biofilm Formation in Pseudomonas aeruginosa and Acinetobacter baumannii among ICU and non-ICU Patients. Infect Epidemiol Med 2016; 2(4): 1-7.
  29. Liu M, Ma J, Jia W, Li W. Antimicrobial resistance and molecular characterization of gene cassettes from class 1 integrons in Pseudomonas aeruginosa strains. Microb Drug Resist 2020; 26(6): 670-6.
  30. Zarei-Yazdeli M, Eslami G, Zandi H, Kiani M, Barzegar K, Alipanah H, et al. Prevalence of class 1, 2 and 3 integrons among multidrug-resistant Pseudomonas aeruginosa in Yazd, Iran J Microbiol 2018; 10(5): 300-6.
  31. Soleimani N, Hosseini SM. Comparison of loop-mediated isothermal amplification, multiplex PCR, and REP-PCR techniques for identification of carbapenem-resistant Acinetobacter baumannii clinical isolates. Iran J Microbiol 2023; 15(5): 654-64.

Ghazaei C. Pseudomonas aeruginosa: Prevalence of Pathogenic Genes, OprL and ToxA in Human and Veterinary Clinical Samples in Ardabil, Iran, 2020. Journal of Advanced Biomedical Sciences 2022; 12(4): 412-21.