جایگاه هوش مصنوعی در علوم دارویی

نوع مقاله : Review Article

نویسندگان

1 دکترای بیوتکنولوژی دارویی، گروه بیوتکنولوژی، دانشکده‌ی داروسازی، دانشگاه علوم پزشکی تهران، تهران، ایران

2 کارشناس ارشد مکاترونیک، دانشکده‌ی مکانیک، دانشگاه سمنان، سمنان، ایران

3 دانشیار بیوتکنولوژی دارویی، گروه بیوتکنولوژی، دانشکده‌ی داروسازی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

10.48305/jims.v43.i813.0451

چکیده

مقاله مروری




مقدمه: کشف و توسعه‌ی دارو جنبه‌های مختلف سلامت انسان را تحت تأثیر قرار می‌دهد و به طور چشمگیری بر بازار دارو تأثیر می‌گذارد. با این حال، سرمایه‌گذاری در یک داروی جدید اغلب به دلیل فرایند طولانی و پیچیده تحقیق و توسعه‌ی دارو یک چالش پیچیده و سخت است.
روش‌ها: با پیشرفت تکنولوژی تجربی و سخت‌افزار کامپیوتر، هوش مصنوعی اخیراً به عنوان ابزاری پیشرو در تجزیه و تحلیل داده‌های فراوان و با ابعاد بالا ظاهر شده است. رشد انفجاری در اندازه داده‌های زیستی مزایایی را در به کارگیری هوش مصنوعی در تمام مراحل تحقیق و توسعه‌ی دارویی فراهم می‌کند.
یافته‌ها: مشابه مدل یادگیری انسان، یادگیری ماشین و یادگیری عمیق می‌توانند به تدریج ویژگی‌های مختلف داده‌ها را تشخیص دهند و پارامترهای مدل خود را از طریق تکرارهای مداوم به روز کنند تا زمانی که یک مدل معتبر تشکیل شود.
نتیجه‌گیری: این مقاله با مروری کوتاه بر مدل‌های رایج هوش مصنوعی در زمینه‌ی کشف دارو آغاز می‌شود. سپس، کاربردهای خاص آنها را در مراحل مختلف تحقیق و توسعه دارویی، مانند کشف هدف، کشف و طراحی دارو، تحقیقات پیش بالینی و تأثیرات در بازار دارویی، به طور خلاصه مورد بحث قرار می‌دهد. در نهایت، محدودیت‌های عمده‌ی هوش مصنوعی در تحقیق و توسعه‌ی دارویی مورد بحث قرار گرفته است.

تازه های تحقیق

مرضیه ثنائی: Google Scholar   

حمید باخرد: Google Scholar 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Role of Artificial Intelligence in Pharmaceutical Sciences

نویسندگان [English]

  • Marzieh Sanaei 1
  • Mohammad Ebrahim Delzendeh Nedamani 2
  • Hamid Bakherad 3
1 PhD. Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
2 MSc of Mechatronics, School of Mechanics, Semnan University, Semnan, Iran
3 Associate Professor of Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Drug discovery and development affects human health and the drug market. However, investing in a new drug is often a complex and difficult challenge due to the long and complex drug research and development process.
Methods: With the advancement of experimental technology and computer hardware, artificial intelligence has recently emerged as a tool for analyzing abundant and high-dimensional data. Explosive growth in the size of biological data provides advantages in applying artificial intelligence in all stages of pharmaceutical research and development.
Findings: Similar to human learning models, machine learning and deep learning can gradually recognize different features of data, and update their model parameters through continuous iterations until a valid model is formed.
Conclusion: This article begins with a brief overview of common AI models in drug discovery. Then, it briefly discusses their specific applications in different drug research and development phases, such as target discovery, drug discovery and design, preclinical research, and effects on the drug market. Finally, major limitations of artificial intelligence in pharmaceutical research and development are discussed.

کلیدواژه‌ها [English]

  • Drug design
  • Artificial intelligence
  • Deep learning
  • Machine learning
  1. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 2016; 47: 20-33.
  2. Clark DE, editor. Evolutionary algorithms in molecular design. Hoboken, New Jersey: John Wiley & Sons, Inc.; 1999.
  3. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010; 9(3): 203-14.
  4. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682-90.
  5. Shoichet BK. Virtual screening of chemical libraries. Nature 2004; 432(7019): 862-5.
  6. Khorasgani RG, Sanaei M, Beigi MM. Computer-aided vaccine design: a brief report [in Persian]. Tehran Univ Med J 2012; 70(6): 383-8.
  7. Aghamollaei H, Mousavi Gargari SL, Ghanei M, Rasaee MJ, Amani J, Bakherad H, et al. Structure prediction, expression, and antigenicity of c‐terminal of GRP78. Biotechnol Appl Biochem 2017; 64(1): 117-25.
  8. Mak KK, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery-where do things stand?. Expert Opin Drug Discov 2022; 17(1): 79-92.
  9. Wills T. AI drug discovery: assessing the first AI-designed drug candidates to go into human clinical trials. [online 2022]. Available from: https://www.cas.org/resources/cas-insights/ai-drug-discovery-assessing-the-first-ai-designed-drug-candidates-to-go-into-human-clinical-trials
  10. Lu M, Yin J, Zhu Q, Lin G, Mou M, Liu F, et al. Artificial intelligence in pharmaceutical sciences. Engineering 2023; 27: 37-69.
  11. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology 2020; 132(2): 379-94.
  12. Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 2019; 20(5): 1878-912.
  13. Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa FJ, Carballal A, et al. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 2021; 19: 4538-58.
  14. Bengio Y. “Learning Deep Architectures for AI”, Foundations and Trends® in Machine Learning 2009; 2(1): 1-127.
  15. Ahmed IT, Der CS, Jamil N, Mohamed MA. Improve of contrast-distorted image quality assessment based on convolutional neural networks. International Journal of Electrical & Computer Engineering (2088-8708). 2019; 9(6): 5604-14.
  16. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011; 10(7): 507-19
  17. Vincent F, Nueda A, Lee J, Schenone M, Prunotto M, Mercola M. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21(12): 899-914.
  18. Li YH, Li XX, Hong JJ, Wang YX, Fu JB, Yang H, et al. Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief Bioinform 2020; 21(2): 649-62.
  19. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-D361.
  20. Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol Adv 2021; 49: 107739.
  21. Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med 2014; 6(7): 57.
  22. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, Lai L, Pei J, Li H. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60.
  23. Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, et al. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 2013; 29(14): 1827-9.
  24. Wang X, Chen H, Yang F, Gong J, Li S, Pei J, et al. i Drug: a web-accessible and interactive drug discovery and design platform. J Cheminform 2014; 6: 28.
  25. Pabon NA, Xia Y, Estabrooks SK, Ye Z, Herbrand AK, Süß E, et al. Predicting protein targets for drug-like compounds using transcriptomics. PLoS Computational Biology 2018; 14(12): e1006651.
  26. Zhong F, Wu X, Yang R, Li X, Wang D, Fu Z, et al. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein Cell 2022; 13(4): 281-301.
  27. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell 2019; 176(3): 535-548.e24.
  28. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods 2018; 15(12): 1053-8.
  29. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, et al. Predicting new molecular targets for known drugs. Nature 2009; 462(7270): 175-81.
  30. Ballante F, Kooistra AJ, Kampen S, de Graaf C, Carlsson J, Schulte G. Structure-based virtual screening for ligands of G protein–coupled receptors: what can molecular docking do for you?. Pharmacol Rev 2021; 73(4): 1698-736.
  31. Khalilzadeh M, Saberi S, Noori G, Vaziri M, Sepehri S, Bakherad H, et al. Synthesis, biological assessment, and computational investigations of nifedipine and monastrol analogues as anti-leishmanial major and anti-microbial agents. Mol Divers 2023; 27(6): 2555-75.
  32. Bakherad H, Farahmand M, Setayesh N, Ebrahim-Habibi A. Engineering an anti-granulocyte colony stimulating factor receptor nanobody for improved affinity. Life Sci 2020; 257: 118052.
  33. Rezaei Adriani R, Mousavi Gargari SL, Bakherad H, Amani J. In silico designing and optimization of anti‐epidermal growth factor receptor scaffolds by complementary‐determining regions‐grafting technique. Quantitative Biology 2024; 12(3): 301-12.
  34. Li GB, Yang LL, Wang WJ, Li LL, Yang SY. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein–ligand interactions. J Chem Inf Model 2013; 53(3): 592-600.
  35. Xie QQ, Zhong L, Pan YL, Wang XY, Zhou JP, Di-Wu L, Huang Q, Wang YL, Yang LL, Xie HZ, Yang SY. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met. Eur J Med Chem 2011; 46(9): 3675-80.
  36. Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design-a review. Curr Top Med Chem 2010; 10(1): 95-115.
  37. AbdulHameed MD, Ippolito DL, Wallqvist A. Predicting rat and human pregnane X receptor activators using Bayesian classification models. Chem Res Toxicol 2016; 29(10): 1729-40.
  38. Martin EJ, Polyakov VR, Tian L, Perez RC. Profile-QSAR 2.0: kinase virtual screening accuracy comparable to four-concentration IC50s for realistically novel compounds. J Chem Inf Model 2017; 57(8): 2077-88.
  39. Li Y, Wang L, Liu Z, Li C, Xu J, Gu Q, Xu J. Predicting selective liver X receptor β agonists using multiple machine learning methods. Mol Biosyst 2015; 11(5): 1241-50.
  40. Cao DS, Liu S, Xu QS, Lu HM, Huang JH, Hu QN, et al. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures. Anal Chim Acta 2012; 752: 1-0.
  41. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
  42. Vora LK, Gholap AD, Jetha K, Thakur RR, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023; 15(7): 1916.
  43. Shamay Y, Shah J, Işık M, Mizrachi A, Leibold J, Tschaharganeh DF, et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nature materials 2018; 17(4): 361-8.
  44. Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nature Reviews Materials 2016; 2(1): 1-7.
  45. Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 2011; 24(9): 1420-56.
  46. Tamardash LK, Bakherad M, Bakherad H, Jalali F, Mozafari Z, Keivanloo A. Synthesis, and molecular docking studies of novel 1, 2, 3-triazoles-linked pyrazole carboxamides as significant anti-microbial and anti-cancer agents. Results in Chemistry 2024; 11: 101842.
  47. Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. The significance of acid/base properties in drug discovery. Chem Soc Rev 2013; 42(2): 485-96.
  48. Xiong Z, Wang D, Liu X, Zhong F, Wan X, Li X, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem 2019; 63(16): 8749-60.
  49. Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model 2019; 59(8): 3370-88.
  50. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010; 50(5): 742-54.
  51. Tao L, Zhang P, Qin C, Chen SY, Zhang C, Chen Z, et al. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Adv Drug Deliv Rev 2015; 86: 83-100.
  52. Radchenko EV, Dyabina AS, Palyulin VA. Towards deep neural network models for the prediction of the blood–brain barrier permeability for diverse organic compounds. Molecules 2020; 25(24): 5901.
  53. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic acids research 2021; 49(W1): W5-14.
  54. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014; 32(1): 40-51.
  55. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci 2019; 40(8): 577-91.
  56. Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH. Advances in electronic phenotyping: from rule-based definitions to machine learning models. Annu Rev Biomed Data Sci 2018; 1(1): 53-68.
  57. Bain EE, Shafner L, Walling DP, Othman AA, Chuang-Stein C, Hinkle J, Hanina A. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth 2017; 5(2): e18.
  58. Farrington CP. Relative incidence estimation from case series for vaccine safety evaluation. Biometrics 1995;51(1): 228-35.
  59. Ryan PB, Stang PE, Overhage JM, Suchard MA, Hartzema AG, DuMouchel W, Reich CG, Schuemie MJ, Madigan D. A comparison of the empirical performance of methods for a risk identification system. Drug Saf 2013; 36(Suppl 1): 143-58.
  60. Norén GN, Hopstadius J, Bate A, Star K, Edwards IR. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Disc 2010; 20: 361-87.
  61. Morel M, Bacry E, Gaïffas S, Guilloux A, Leroy F. ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection. Biostatistics 2020; 21(4): 758-74.
  62. Mower J, Subramanian D, Cohen T. Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications. J Am Med Inform Assoc 2018; 25(10): 1339-50.
  63. Zhang C, Mou M, Zhou Y, Zhang W, Lian X, Shi S, et al. Biological activities of drug inactive ingredients. Brief Bioinform 2022; 23(5): bbac160.
  64. Khan B, Fatima H, Qureshi A, Kumar S, Hanan A, Hussain J, et al. Drawbacks of artificial intelligence and their potential solutions in the healthcare sector. Biomed Mater Devices 2023; 1(2): 731-8.
  65. Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022; 145: 105465.