مروری بر نقش میکروبیوم دستگاه تناسلی زنان در سلامت باروری

نوع مقاله : مقاله مروری

نویسندگان

1 دکتری میکروبیولوژی، گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد فلاورجان، اصفهان، ایران

2 استادیار، گروه زنان و زایمان، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد فلاورجان، اصفهان، ایران

10.48305/jims.v43.i828.1027

چکیده

مقاله مروری




مقدمه: سلامت باروری زنان، با چالش‌های بنیادینی روبه‌روست. پژوهش‌های اخیر حاکی از آن است که میکروبیوم با آناتومی، بافت‌شناسی و سیستم ایمنی دستگاه تناسلی زنان، که ارکان اصلی حفظ سلامت باروری و پیشگیری از عوارض نامطلوب بارداری به شمار می‌روند، در تعامل است. با این حال، سازوکارهای دقیقی که زیربنای این تعامل و تأثیر میکروبیوم بر عملکردهای فیزیولوژیکی دستگاه تناسلی هستند، هنوز ناشناخته باقی مانده‌اند و به‌عنوان حوزه‌ای نوین در پژوهش‌های میکرواکولوژی دستگاه تناسلی زنان مطرح می‌شوند.
روش‌ها: در این مقاله مروری، با نگاهی نوین، به بررسی سازوکارهای تعامل میان میکروبیوم و آناتومی، بافت‌شناسی، و سیستم ایمنی دستگاه تناسلی زنان پرداخته شده است. همچنین عواملی که بر ترکیب میکروبیوم این دستگاه تأثیر می‌گذارند و رویکردهای پزشکی در مدیریت سلامت دستگاه تناسلی زنان مبتنی بر میکروبیوم مورد تحلیل قرار گرفته‌اند.
یافته‌ها: این مطالعه بر نقش محوری میکروبیوم دستگاه تناسلی زنان در حفظ سلامت باروری و تأثیر آن بر بروز بیماری‌های مرتبط تأکید می‌کند. یافته‌های این پژوهش از اکتشاف رویکردهای نوآورانه در پیشگیری، پایش و درمان بیماری‌های دستگاه تناسلی زنان بر پایه‌ی میکروبیوم حمایت می‌کند.
نتیجه‌گیری: این بررسی، گامی مهم در جهت درک عمیق‌تر ارتباط پیچیده‌ی میکروبیوم با سلامت باروری زنان است و افق‌های تازه‌ای را برای پژوهش‌های آینده و توسعه‌ی راهبردهای درمانی هدفمند می‌گشاید.

تازه های تحقیق

عاطفه بیات: Google Scholar

فاطمه صفری: Google Scholar

هتاو قاسمی تهرانی: Google Scholar, PubMed 

منیر دودی:  Google Scholar, PubMed 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Role of the Female Reproductive Tract Microbiome in Reproductive Health

نویسندگان [English]

  • Atefeh Bayat 1
  • Fatemeh Safari 1
  • Hatav Ghasemi Tehrani 2
  • Monir Doudi 3
1 PhD in Microbiology, Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
2 Assistant Professor, Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

Background: Women's reproductive health faces fundamental challenges. Recent studies indicate that the microbiome interacts with the anatomy, histology, and immune system of the female reproductive tract, key elements in maintaining reproductive health and preventing adverse pregnancy outcomes. However, the precise mechanisms underlying this interaction and the microbiome's influence on the physiological functions of the reproductive tract remain unknown, emerging as a novel field in female reproductive tract microecology research.
Methods: This review article employs a novel approach to examine the interaction mechanisms between the microbiome and the anatomy, histology, and immune system of the female reproductive tract. It also analyzes factors affecting the composition of this microbiome and microbiome-based medical approaches in managing female reproductive health.
Findings: The study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and its impact on the development of related disorders. The findings support the exploration of innovative microbiome-based approaches for the prevention, monitoring, and treatment of female reproductive tract diseases.
Conclusion: This review represents a significant step toward a deeper understanding of the complex relationship between the microbiome and women's reproductive health, while opening new horizons for future research and the development of targeted therapeutic strategies.

کلیدواژه‌ها [English]

  • Women's Reproductive Health
  • Microbiome
  • Female Genital Tract
  • Genital Anatomy
  • Microecology
  1. Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 2017; 8(1): 875.
  2. Koedooder R, Mackens S, Budding A, Fares D, Blockeel C, Laven J, et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update 2018; 25(3): 298-325.
  3. Anderson DJ, Marathe J, Pudney J. The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol 2014; 71(6): 618-23.
  4. Delgado-Diaz DJ, Jesaveluk B, Hayward JA, Tyssen D, Alisoltani A, Potgieter M, et al. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. Microbiome 2022; 10(1): 141.
  5. Kim B, Shynlova O, Lye S. Probiotic Lactobacillus rhamnosus GR-1 is a unique prophylactic agent that suppresses infection-induced myometrial cell responses. Sci Rep 2019; 9(1): 4698.
  6. Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update 2015; 21(3): 353-77.
  7. Inversetti A, Zambella E, Guarano A, Dell’Avanzo M, Di Simone N. Endometrial microbiota and immune tolerance in pregnancy. Int J Mol Sci 2023; 24(3): 2995.
  8. Wang N, Chen L, Yi K, Zhang B, Li C, Zhou The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2024; 64(6): 1486-507.
  9. Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol 2020; 17(4): 232-50.
  10. Wang J, Li Z, Ma X, Du L, Jia Z, Cui X, et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun 2021;12(1):4191.
  11. Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 2020; 18(9): 521-38.
  12. Cohen CR, Wierzbicki MR, French AL, Morris S, Newmann S, Reno H, et al. Randomized trial of lactin-V to prevent recurrence of bacterial vaginosis. N Engl J Med 2020; 382(20): 1906-15.
  13. Iwami N, Kawamata M, Ozawa N, Yamamoto T, Watanabe E, Mizuuchi M, et al. Therapeutic intervention based on gene sequencing analysis of microbial 16S ribosomal RNA of the intrauterine microbiome improves pregnancy outcomes in IVF patients: a prospective cohort study. J Assist Reprod Genet 2023; 40(1): 125-35.
  14. Integrative H, Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, et al. The integrative human microbiome project. Nature 2019; 569(7758): 641-8.
  15. Santella B, Schettino MT, Franci G, De Franciscis P, Colacurci N, Schiattarella A, et al. Microbiota and HPV: The role of viral infection on vaginal microbiota. J Med Virol 2022; 94(9): 4478-84.
  16. Kroon SJ, Ravel J, Huston WM. Cervicovaginal microbiota, women's health, and reproductive outcomes. Fertil Steril 2018; 110(3): 327-36.
  17. Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol 2018; 26(1): 16-32.
  18. France MT, Ma B, Gajer P, Brown S, Humphrys MS, Holm JB, et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome 2020; 8: 1-15.
  19. Doyle R, Gondwe A, Fan Y-M, Maleta K, Ashorn P, Klein N, et al. A Lactobacillus-deficient vaginal microbiota dominates postpartum women in rural Malawi. Appl Environ Microbiol 2018; 84(6): e02150-17.
  20. Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol 2009; 9: 116.
  21. Fuochi V, Cardile V, Petronio Petronio G, Furneri PM. Biological properties and production of bacteriocins‐like‐inhibitory substances by Lactobacillus strains from human vagina. J Appl Microbiol 2019; 126(5): 1541-50.
  22. Saadaoui M, Singh P, Ortashi O, Al Khodor S. Role of the vaginal microbiome in miscarriage: exploring the relationship. Front Cell Infect Microbiol 2023; 13: 1232825.
  23. Zhang F, Zhang T, Ma Y, Huang Z, He Y, Pan H, et al. Alteration of vaginal microbiota in patients with unexplained recurrent miscarriage. Exp Ther Med 2019; 17(5): 3307-16.
  24. Brown RG, Marchesi JR, Lee YS, Smith A, Lehne B, Kindinger LM, et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med 2018; 16(1): 9.
  25. Kiecka A, Macura B, Szczepanik M. Can Lactobacillus spp. be a factor reducing the risk of miscarriage? Pol J Microbiol 2021; 70(4): 431-46.
  26. Xu L, Huang L, Lian C, Xue H, Lu Y, Chen X, et al. Vaginal microbiota diversity of patients with embryonic miscarriage by using 16S rDNA high‐throughput sequencing. Int J Genomics 2020; 2020(1): 1764959.
  27. Al‐Memar M, Bobdiwala S, Fourie H, Mannino R, Lee YS, Smith A, et al. The association between vaginal bacterial composition and miscarriage: a nested case–control study. BJOG 2020; 127(2): 264-74.
  28. Bayat A, Doudi M, Ahadi AM, Ghasemi-Tehrani H. Molecular detection of Streptococcus agalactiae and its abundant capsular serotypes in vaginal secretions of women with abortion in Isfahan, Iran. International Journal of Molecular and Clinical Microbiology 2022; 12(1): 1621-31.
  29. Shahid M, Quinlivan JA, Peek M, Castaño‐Rodríguez N, Mendz GL. Is there an association between the vaginal microbiome and first trimester miscarriage? A prospective observational study. J Obstet Gynaecol Res 2022; 48(1): 119-28.
  30. Singer M, Borg M, Ouburg S, Morré SA. The relation of the vaginal microbiota to early pregnancy development during in vitro fertilization treatment—A meta-analysis. J Gynecol Obstet Hum Reprod 2019; 48(4): 223-9.
  31. Bayat A, Ahadi AM, Doudi M, Ghasemi Tehrani H. Frequency of Listeria monocytogenes and Brucella abortus Infections in the Vaginal Secretions of Women with Spontaneous Abortion: A case study. Microbiology, Metabolites and Biotechnology 2023; 6(2): 37-45.
  32. Bayat A, Ghasemi Tehrani H, Doudi M, Ahadi AM. The Frequency of Streptococcus agalactiae in the Vaginal Secretions of Women with Abortion at Gynecology and Infertility Medical Centers in Isfahan City. J Isfahan Med Sch 2024; 41(746): 1074-66.
  33. Bayat A, Doudi M, Ahadi AM, Ghasemi Tehrani H. Isolation and Characterization of Streptococcus agalactiae and its Capsular Antigen, Along with Mycoplasma hominis and Listeria monocytogenes, as Abundant Infections in Women with Abortion in Iran. Jundishapur J Microbiol 2023; 16(10): e141748.
  34. Nayeri T, Sarvi S, Moosazadeh M, Amouei A, Hosseininejad Z, Daryani A. The global seroprevalence of anti-Toxoplasma gondii antibodies in women who had spontaneous abortion: A systematic review and meta-analysis. PLoS Negl Trop Dis 2020; 14(3): e0008103.
  35. Giakoumelou S, Wheelhouse N, Brown J, Wade J, Simitsidellis I, Gibson D, et al. Chlamydia trachomatis infection of human endometrial stromal cells induces defective decidualisation and chemokine release. Sci Rep 2017; 7(1): 2001.
  36. Hermonat PL, Han L, Wendel PJ, Quirk JG, Stern S, Lowery CL, et al. Human papillomavirus is more prevalent in first trimester spontaneously aborted products of conception compared to elective specimens. Virus Genes 1997; 14(1): 13-7.
  37. Kapranos NC, Kotronias DC. Detection of herpes simplex virus in first trimester pregnancy loss using molecular techniques. In Vivo 2009; 23(5): 839-42.
  38. Onywera H, Williamson A-L, Mbulawa ZZ, Coetzee D, Meiring TL. The cervical microbiota in reproductive-age South African women with and without human papillomavirus infection. Papillomavirus Res 2019; 7: 154-63.
  39. Keburiya LK, Smolnikova VY, Priputnevich TV, Muravieva VV, Gordeev AB, Trofimov DY, et al. Does the uterine microbiota affect the reproductive outcomes in women with recurrent implantation failures? BMC Womens Health 2022; 22(1): 168.
  40. Dong B, Huang Y, Cai H, Chen Y, Li Y, Zou H, et al. Prevotella as the hub of the cervicovaginal microbiota affects the occurrence of persistent human papillomavirus infection and cervical lesions in women of childbearing age via host NF‐κB/C‐myc. J Med Virol 2022; 94(11): 5519-34.
  41. Onywera H, Williamson A-L, Mbulawa ZZ, Coetzee D, Meiring TL. Factors associated with the composition and diversity of the cervical microbiota of reproductive-age Black South African women: a retrospective cross-sectional study. PeerJ 2019; 7: e7488.
  42. Chen P, Chen P, Guo Y, Fang C, Li T. Interaction between chronic endometritis caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure. Front Immunol 2021; 12: 748447.
  43. Franasiak JM, Werner MD, Juneau CR, Tao X, Landis J, Zhan Y, et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet2016; 33(1): 129-36.
  44. 44. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215(6): 684-703.
  45. Canha-Gouveia A, Pérez-Prieto I, Rodríguez CM, Escamez T, Leonés-Baños I, Salas-Espejo E, et al. The female upper reproductive tract harbors endogenous microbial profiles. Front Endocrinol (Lausanne) 2023; 14: 1096050.
  46. Walther-António MR, Chen J, Multinu F, Hokenstad A, Distad TJ, Cheek EH, et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med 2016; 8(1): 122.
  47. Pelzer ES, Willner D, Buttini M, Huygens F. A role for the endometrial microbiome in dysfunctional menstrual bleeding. Antonie Van Leeuwenhoek 2018; 111(6): 933-43.
  48. Miles SM, Hardy BL, Merrell DS. Investigation of the microbiota of the reproductive tract in women undergoing a total hysterectomy and bilateral salpingo-oopherectomy. Fertil Steril 2017; 107(3): 813-20. e1.
  49. Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Alwine JC, et al. The ovarian cancer oncobiome. Oncotarget 2017; 8(22): 36225-45.
  50. Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci Rep 2019; 9(1): 1691.
  51. Mashyn S, Borodanov S, Klymenko O, Lev I, Shipova K. The role of Lactobacilli in the human microbiome and methods of their cultivation and preservation. Georgian Med News 2022(326): 23-35.
  52. Vartoukian SR, Palmer RM, Wade WG. Cultivation of a Synergistetes strain representing a previously uncultivated lineage. Environ Microbiol 2010; 12(4): 916-28.
  53. Deng H, Xu Y, Liu Y, Che Z, Guo H, Shan S, et al. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 2012; 84(3): 1253-8.
  54. Huang W, Yang Y, Zhang X, Zhao C, Yin A, Zhang X, et al. An easy operating pathogen microarray (EOPM) platform for rapid screening of vertebrate pathogens. BMC Infect Dis 2013; 13: 437.
  55. Duygan BDÖ, van der Meer JR. Recent advances in microbial community analysis from machine learning of multiparametric flow cytometry data. Curr Opin Biotechnol 2022; 75: 102688.
  56. Khachatryan L, de Leeuw RH, Kraakman ME, Pappas N, Te Raa M, Mei H, et al. Taxonomic classification and abundance estimation using 16S and WGS—A comparison using controlled reference samples. Forensic Sci Int Genet 2020; 46: 102257.
  57. Akacin I, Ersoy Ş, Doluca O, Güngörmüşler M. Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res 2022; 264: 127154.
  58. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet 2019; 20(6): 341-55.
  59. Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl) 2021; 99(4): 531-53.
  60. Balakrishnan SN, Yamang H, Lorenz MC, Chew SY, Than LTL. Role of vaginal mucosa, host immunity and microbiota in vulvovaginal candidiasis. Pathogens 2022; 11(6): 618.
  61. Gong Z, Luna Y, Yu P, Fan H. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2. PLoS One 2014; 9(9): e107758.
  62. Chopra C, Bhushan I, Mehta M, Koushal T, Gupta A, Sharma S, et al. Vaginal microbiome: considerations for reproductive health. Future Microbiol 2022; 17(18): 1501-13.
  63. Witkin SS, Mendes-Soares H, Linhares IM, Jayaram A, Ledger WJ, Forney LJ. Influence of vaginal bacteria and D-and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. mBio 2013;4(4): e00460.
  64. Maseroli E, Vignozzi L. Testosterone and vaginal function. Sex Med Rev 2020; 8(3): 379-92.
  65. Gosmann C, Handley SA, Farcasanu M, Abu-Ali G, Bowman BA, Padavattan N, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African Immunity 2017; 46(1): 29-37.
  66. Torcia MG. Interplay among vaginal microbiome, immune response and sexually transmitted viral infections. Int J Mol Sci 2019; 20(2): 266.
  67. Anton L, Sierra L-J, DeVine A, Barila G, Heiser L, Brown AG, et al. Common cervicovaginal microbial supernatants alter cervical epithelial function: mechanisms by which Lactobacillus crispatus contributes to cervical health. Front Microbiol 2018; 9: 2181.
  68. Łaniewski P, Herbst-Kralovetz Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. NPJ Biofilms Microbiomes 2021; 7(1): 88.
  69. Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction 2007; 134(2): 327-40.
  70. Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, et al. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol 2022; 13: 928475.
  71. Pérez-Cerezales S, Ramos-Ibeas P, Acuña OS, Avilés M, Coy P, Rizos D, et al. The oviduct: from sperm selection to the epigenetic landscape of the embryo. Biol Reprod 2018; 98(3): 262-76.
  72. Barton BE, Herrera GG, Anamthathmakula P, Rock JK, Willie AM, Harris EA, et al. Roles of steroid hormones in oviductal function. Reproduction 2020; 159(3): R125-R37.
  73. Zhou Z, Sun X, Zhang Q, Zeng F, Yin J, Wang L. Lactobacillus rhamnosus GG attenuates the pathology of Chlamydial muridarium in the upper genital tract in mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2021; 46(11): 1187-94.
  74. Gupta P, Singh MP, Goyal K. Diversity of vaginal microbiome in pregnancy: deciphering the obscurity. Front Public Health 2020; 8: 326.
  75. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011; 108 Suppl 1(Suppl 1): 4680-7.
  76. Newton ER, Piper JM, Shain RN, Perdue ST, Peairs W. Predictors of the vaginal microflora. Am J Obstet Gynecol 2001; 184(5): 845-55.
  77. Marnach ML, Wygant JN, Casey PM, editors. Evaluation and management of vaginitis. Mayo Clin Proc 2022;97(2): 347-58.
  78. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2014; 2(1): 10.
  79. Severgnini M, Morselli S, Camboni T, Ceccarani C, Laghi L, Zagonari S, et al. A deep look at the vaginal environment during pregnancy and puerperium. Front Cell Infect Microbiol 2022; 12: 838405.
  80. Stennett CA, Dyer TV, He X, Robinson CK, Ravel J, Ghanem KG, et al. A cross-sectional pilot study of birth mode and vaginal microbiota in reproductive-age women. PLoS One 2020; 15(4): e0228574.
  81. Kervinen K, Holster T, Saqib S, Virtanen S, Stefanovic V, Rahkonen L, et al. Parity and gestational age are associated with vaginal microbiota composition in term and late term pregnancies. EBioMedicine 2022; 81.
  82. Bogado Pascottini O, Spricigo J, Van Schyndel S, Mion B, Rousseau J, Weese J, et al. Effects of parity, blood progesterone, and non-steroidal anti-inflammatory treatment on the dynamics of the uterine microbiota of healthy postpartum dairy cows. PLoS One 2021; 16(2): e0233943.
  83. Brotman RM, Klebanoff MA, Nansel T, Zhang J, Schwebke JR, Kai FY, et al. Why do women douche? A longitudinal study with two analytic approaches. Ann Epidemiol 2008; 18(1): 65-73.
  84. Sola-Leyva A, Andrés-León E, Molina NM, Terron-Camero LC, Plaza-Díaz J, Sáez-Lara MJ, et al. Mapping the entire functionally active endometrial microbiota. Hum Reprod 2021; 36(4): 1021-31.
  85. Shen J, Song N, Williams CJ, Brown CJ, Yan Z, Xu C, et al. Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. Sci Rep 2016; 6(1): 24380.
  86. Whitney BM, Srinivasan S, Tapia K, Muriuki EM, Chohan BH, Wallis JM, et al. Influence of intramuscular depot medroxyprogesterone acetate initiation on vaginal microbiota in the postpartum period. Clin Infect Dis 2021; 72(12): e1093-102.
  87. Amabebe E, Anumba DO. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae. Front Immunol 2020; 11: 2184.
  88. Tohill BC, Heilig CM, Klein RS, Rompalo A, Cu-Uvin S, Piwoz EG, et al. Nutritional biomarkers associated with gynecological conditions among US women with or at risk of HIV infection. Am J Clin Nutr 2007; 85(5): 1327-34.
  89. Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol 2016; 7: 1936.
  90. Vodstrcil LA, Twin J, Garland SM, Fairley CK, Hocking JS, Law MG, et al. The influence of sexual activity on the vaginal microbiota and Gardnerella vaginalis clade diversity in young women. PloS One 2017; 12(2): e0171856.
  91. Kreisel KM, Spicknall IH, Gargano JW, Lewis FM, Lewis RM, Markowitz LE, et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2018. Sex Transm Dis 2021; 48(4): 208-14.
  92. Hickey RJ, Abdo Z, Zhou X, Nemeth K, Hansmann M, Osborn III TW, et al. Effects of tampons and menses on the composition and diversity of vaginal microbial communities over time. BJOG 2013; 120(6): 695-706.
  93. Chase DJ, Schenkel BP, Fahr A-M, Eigner U. A prospective, randomized, double-blind study of vaginal microflora and epithelium in women using a tampon with an apertured film cover compared with those in women using a commercial tampon with a cover of nonwoven fleece. J Clin Microbiol 2007; 45(4): 1219-24.
  94. Zhang Z, Li T, Zhang D, Zong X, Bai H, Bi H, et al. Distinction between vaginal and cervical microbiota in high-risk human papilloma virus-infected women in China. BMC Microbiol 2021; 21(1): 90.
  95. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature 2014; 509(7500): 357-60.
  96. Taghavian Sh, Yekdaneh A, Ghasemi Tehrani H, Valiani M, Alian S, Beiranvand R. Effect of vaginal gel containing propolis extract and oral metronidazole pill on dyspareunia in woman with trichomoniasis at Isfahan in 2019. Iranian Journal of Gynecology, Obstetrics and Infertility 2021; 23(12): 76-85.‎
  97. Tomas M, Palmeira-de-Oliveira A, Simoes S, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Bacterial vaginosis: Standard treatments and alternative strategies. Int J Pharm 2020; 587: 119659.
  98. Mtshali A, San JE, Osman F, Garrett N, Balle C, Giandhari J, et al. Temporal changes in vaginal microbiota and genital tract cytokines among South African women treated for bacterial vaginosis. Front Immunol 2021; 12: 730986.
  99. Li T, Zhang Z, Wang F, He Y, Zong X, Bai H, et al. Antimicrobial susceptibility testing of metronidazole and clindamycin against Gardnerella vaginalis in planktonic and biofilm formation. Can J Infect Dis Med Microbiol 2020; 2020(1): 1361825.
  100. Bradshaw CS, Sobel JD. Current treatment of bacterial vaginosis—limitations and need for innovation. J Infect Dis 2016; 214(Suppl 1): S14-S20.
  101. Salmanov AG, Koctjuk IM, Ihnatieva OK, Artyomenko V, Paliga I, Suslikova L. Prevalence of healthcare-associated cervicitis and antimicrobial resistance of the responsible pathogens in Ukraine: results of a multicenter study (2019-2021). Wiad Lek 2022; 75(9 pt 2): 2189-97.
  102. Unemo M, Seifert HS, Hook III EW, Hawkes S, Ndowa F, Dillon J-AR. Gonorrhoea. Nat Rev Dis Primers 2019; 5(1): 79.
  103. George CR, Enriquez RP, Gatus BJ, Whiley DM, Lo Y-R, Ishikawa N, et al. Systematic review and survey of Neisseria gonorrhoeae ceftriaxone and azithromycin susceptibility data in the Asia Pacific, 2011 to 2016. PLoS One 2019; 14(4): e0213312.
  104. Käding N, Schmidt N, Scholz C, Graspeuntner S, Rupp J, Shima K. Impact of first-line antimicrobials on Chlamydia trachomatis-induced changes in host metabolism and cytokine production. Front Microbiol 2021; 12: 676747.
  105. Salado-Rasmussen K, Jensen JS. Mycoplasma genitalium testing pattern and macrolide resistance: a Danish nationwide retrospective survey. Clin Infect Dis 2014; 59(1): 24-30.
  106. Tehrani HG, Rezaei M, Mehrabian F, Naghshineh E, Moghoofei M. Viral Infection in Endometritis: Is There an Important Role or Not? Am J Reprod Immunol 2024; 92(3): e13930.
  107. Kitaya K, Matsubayashi H, Takaya Y, Nishiyama R, Yamaguchi K, Takeuchi T, et al. Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am J Reprod Immunol 2017; 78(5): e12719.
  108. Johnston-MacAnanny EB, Hartnett J, Engmann LL, Nulsen JC, Sanders MM, Benadiva CA. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 2010; 93(2): 437-41.
  109. Cicinelli E, Matteo M, Tinelli R, Lepera A, Alfonso R, Indraccolo U, et al. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum Reprod 2015; 30(2): 323-30.
  110. Walker CK, Landers DV, Ohm-Smith MJ, Robbie MO, Luft J, Schachter J, et al. Comparison of cefotetan plus doxycycline with cefoxitin plus doxycycline in the inpatient treatment of acute salpingitis. Sex Transm Dis 1991; 18(2): 119-23.
  111. Marrazzo JM, Dombrowski JC, Wierzbicki MR, Perlowski C, Pontius A, Dithmer D, et al. Safety and efficacy of a novel vaginal anti-infective, TOL-463, in the treatment of bacterial vaginosis and vulvovaginal candidiasis: a randomized, single-blind, phase 2, controlled trial. Clin Infect Dis 2019; 68(5): 803-9.
  112. Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med 2019; 25(10): 1500-4.
  113. DeLong K, Bensouda S, Zulfiqar F, Zierden HC, Hoang TM, Abraham AG, et al. Conceptual design of a universal donor screening approach for vaginal microbiota transplant. Front Cell Infect Microbiol 2019; 9: 306.